Показатель преломления. Дисперсией света называется зависимость показателя преломления от частоты Зависимость показателя преломления от длины

Дисперсией света называется зависимость показателя преломления от частоты. Как показали исследования, зависимость n от ν присуща всем веществам.

По теории Максвелла, скорость света в вакууме https://pandia.ru/text/80/368/images/image002_190.gif" width="45" height="25 src="> – электрическая и магнитные постоянные, не зависящие от частоты. Убедительные подтверждения этого вывода были получены в астрофизике при наблюдении излучения двойных звезд. Двойная звезда представляет собой систему, состоящую из двух звезд, которые связаны силами тяготения и движутся вокруг общего центра инерции. Наблюдатель, находящийся в плоскости движения обеих звезд, должен видеть периодически повторяющиеся взаимные затмения этих звезд, при которых яркость двойной звезды заметно уменьшается. Если бы скорость света в вакууме зависела от частоты, то при затмениях должна была бы изменяться не только яркость, но и окраска двойной звезды. Например, если бы скорость c для красного света была бы больше, чем для фиолетового, то в начале затмения двойная звезда должна была бы приобрести сине-фиолетовую окраску, а в конце – красно-желтую. Однако опыты показывают, что таких закономерностей в изменениях окраски двойных звезд нет. Следовательно, скорость в вакууме для света любой частоты ν одна и та же. Поэтому дисперсия света в веществе связана с зависимостью от ν фазовой скорости света в этом веществе:

https://pandia.ru/text/80/368/images/image004_131.gif" width="47" height="48">), то в равной мере можно говорить о зависимости n и v от λ: n = n (λ) и v = v (λ). Зависимости n от λ и ν нелинейные, т. е.

https://pandia.ru/text/80/368/images/image006_106.gif" width="255" height="48 src=">.

Для стекла в области видимого света . Аналогичный характер зависимости n от λ наблюдается у всех прозрачных веществ, т. е. в областях длин волн, достаточно удаленных от полос поглощения света веществом. Для стекла эти полосы находятся в УФ и ИК частях спектра..gif" width="288" height="198">

Принято называть дисперсию нормальной , если https://pandia.ru/text/80/368/images/image010_80.gif" width="148" height="48 src=">,

где a , b , c ,... – постоянные, значения которых для каждого вещества определяются экспериментально. В большинстве случаев можно ограничиться двумя первыми членами формулы, полагая

https://pandia.ru/text/80/368/images/image012_64.gif" width="80" height="52 src=">

Аномальная дисперсия , если , т. е. показатель преломления уменьшается с увеличением длины волны.

На рис. 24.2 показан типичный ход зависимости n от λ. Аномальной дисперсии соответствует область спектра от λ1 до λ2 .

Рассмотрим волну, описываемую уравнением:

https://pandia.ru/text/80/368/images/image014_55.gif" width="116 height=20" height="20"> (24.2)

Определим скорость перемещения данного значения фазы в пространстве. Для этого продифференцируем выражение (24.2):

Откуда получим скорость:

https://pandia.ru/text/80/368/images/image017_50.gif" width="63" height="48 src="> (24.4)

Рассмотрим импульс, составленный из двух волн с одинаковой амплитудой и близкими частотами и волновыми числами:

https://pandia.ru/text/80/368/images/image023_36.gif" width="95" height="25 src=">

где – медленно меняющаяся амплитуда.

Для нахождения групповой скорости U надо написать условие постоянства амплитуды импульса:

https://pandia.ru/text/80/368/images/image027_34.gif" width="128" height="20 src=">

Откуда получим групповую скорость:

Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциалам , получим формулу (24.4)

В области аномальной дисперсии групповая скорость света в веществе https://pandia.ru/text/80/368/images/image029_36.gif" width="59" height="48 src=">

Можно показать, что групповая скорость связана с фазовой соотношением:

https://pandia.ru/text/80/368/images/image031_30.gif" width="364" height="194">

Коллиматор создает параллельный пучок исследуемого света. Призма разлагает падающий пучок в спектр. В фокальной плоскости линзы Л2 наблюдается дисперсионный спектр, который либо рассматривается через окуляр Л3, либо фотографируется.

Существенное отличие дисперсионного спектра от дифракционного состоит в том, что угол отклонения призмой лучей монохроматического света не пропорционален ни длине волны этого света, ни его частоте. Разложение света в спектр призмой происходит по значениям показателя преломления, поэтому для определения длины волны исследуемого света необходимо знать зависимость показателя преломления от длины волны . Это является недостатком призменных спектрографов. Дисперсионные спектральные приборы необходимо предварительно градуировать с помощью эталонных , имеющих линейчатый спектр. Но несмотря на это призменные спектрографы имеют большое применение на практике, так как изготовление хороших призм значительно проще, чем хороших дифракционных решеток. Кроме того призменные спектрографы обладают большей светосилой.

§ 25. Классическая теория дисперсии света

Дисперсия света является результатом взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества. Поэтому макроскопическая электромагнитная теория Максвелла не могла объяснить это явление. Классическая теория дисперсии была разработана лишь после создания Лоренцем электронной теории строения вещества.

Из теории Максвелла следует, что абсолютный показатель преломления n среды выражается формулой:

https://pandia.ru/text/80/368/images/image034_28.gif" width="88" height="24 src=">.gif" width="144" height="52 src=">,

где – диэлектрическая восприимчивость среды, ε0 – электрическая постоянная, P – проекция вектора поляризации на направление вектора https://pandia.ru/text/80/368/images/image039_27.gif" width="96" height="52 src="> (25.2)

Выше уже говорилось о том, что в силу большой частоты световых волн поляризация среды обусловлена только смещением электронов (электронная поляризация), следовательно, для однородной среды вектор поляризации

https://pandia.ru/text/80/368/images/image041_22.gif" width="17" height="24"> – наведенный дипольный момент атома.

z – смещение электрона под действием электрического поля световой волны. Тогда вектор поляризации имеет вид:

https://pandia.ru/text/80/368/images/image044_22.gif" width="16" height="21 src=">.gif" width="108" height="57 src="> (25.4)

Таким образом, задача сводится к нахождению зависимости z от E .

Для прозрачных веществ в первом приближении можно считать, что на колеблющийся электрон действуют силы:
1) вынуждающая сила

https://pandia.ru/text/80/368/images/image048_21.gif" width="68" height="20"> – циклическая частота световой волны;

2) возвращающая квазиупругая сила взаимодействия оптического электрона с остальной частью атома

https://pandia.ru/text/80/368/images/image063_15.gif" width="53" height="25 src=">.gif" width="53" height="25 src=">(на рис. 25.2 – пунктирные кривые).

В действительности, как показывают опыты, при прохождении света сквозь любое газообразное вещество наблюдается целый ряд характерных для этого вещества линий и полос поглощения. Следовательно, каждое вещество характеризуется определенным набором различных циклических частот ω0k. Поэтому в классической теории дисперсии света вводится предположение о том, что каждый атом (или молекулу) вещества, можно рассматривать как систему гармонических осцилляторов – заряженных частиц с различными эффективными зарядами qk и массами mk, совершающих свободные незатухающие колебания с циклическими частотами ω0k. Под действием электрического поля световой волны все эти осцилляторы совершают вынужденные колебания и вносят свой вклад в поляризацию вещества, следовательно, и в выражение для его показателя преломления. Если коэффициент затухания для осциллятора k-го сорта, соответствующего циклической частоте ω0k, равен βk, то получаем

https://pandia.ru/text/80/368/images/image067_14.gif" width="502" height="258">

На практике обычно используют зависимость показателя преломления от длины волны (рис. 25.3)..gif" width="56" height="48 src="> (на рис. 24.2 это область от l 1 до l 2 ).

При использовании материалов этого сайта - и размещение баннера -ОБЯЗАТЕЛЬНО!!!

Исследование показателя преломления жидкости от концентрации вещества в растворе

Материалы предоставил: научный руководитель Максимов Юрий Алексеевич, учитель физики, МОУ «Большесундырская СОШ» email: [email protected] Исследование выполнила: ученица 10 класса Кузьмина Ксения

ВВЕДЕНИЕ

Преломление (рефракция) - явление изменения пути следования светового луча (или других волн), возникающее на границе раздела двух прозрачных (проницаемых для этих волн) сред или в толще среды с непрерывно изменяющимися свойствами.

Преломление встречается на каждом шагу и воспринимается как совершенно обыденное явление: можно видеть как ложка, которая находится в чашке с чаем, будет «переломлена» на границе воды и воздуха. Преломление и отражение света в каплях воды порождает радугу.

Я решила рассмотреть преломление света в жидкостях. Зная, что преломление света зависит от:

  • Цвета света – дисперсия света
  • Рода вещества

Мне стало интересно, от каких же еще величин зависит показатель преломления в жидкостях. Я посчитала, что возможно коэффициент преломления зависит еще и от концентрации раствора. И чтобы выяснить это, я поставила перед собой несколько целей и задач:

Цели эксперимента:

  1. Изучение зависимости показателя преломления жидкости от концентрации раствора
  2. Приобретение новых знаний и навыков проведения экспериментов
  3. Повторение и углубление ранее полученных материалов.

Задачи:

  1. Путем проведения экспериментов изучить зависимость угла преломления света в жидкостях от концентрации раствора.
  2. Установить зависимость показателя преломления от концентрации раствора.
  3. Сравнить зависимости показателя преломления растворов различных веществ.
  4. Определить, каким образом полученные результаты можно использовать на практике.

КРАТКАЯ ТЕОРИЯ

Если луч света пересекает границу раздела двух прозрачных однородных сред 1 и 2 то направление луча изменяется в соответствии с законом преломления

где α- угол падения, β - угол преломления, n21 - относительный показатель преломления, т.е. показатель преломления второй среды 2 относительно первой среды 1.

где n1 и n2 - абсолютные показатели преломления сред 1 и 2 соответственно, т.е. показатели преломления этих сред относительно вакуума.

Оборудование для эксперимента

Для достижения поставленных задач я решила провести эксперименты с растворами разных веществ:

  • Спирта
  • Медного купороса
  • Перекиси водорода

Для этого мне понадобились некоторые детали комплекта лаборатории L-микро «Геометрическая оптика»:

  • Лампы накаливания с рабочим напряжением 12В, мощностью 21Вт и прямой нитью накала. Лампы устанавливают в патрон держателя, находящегося внутри корпуса осветителя.
  • Диафрагма с одной щелью.
  • Соединительная колодка, которая служит для подключения осветителей к источнику электропитания.
  • Кювета (прямоугольная прозрачная емкость для наполнения жидкости)
  • Лимб (транспортир).

Техника исследования

Соединив все эти детали, мы получаем устройство, которое позволяет нам проводить эксперименты для определения зависимости показателя преломления разных жидкостей от концентрации раствора.

При работе с данным оборудованием следует проявить осторожность с осветителем из-за его нагрева, а также с кюветой, которая плохо держится на доске из-за слабых магнитов. Для точного расчета измерений изменим лимб из комплекта, отметив с помощью простого транспортира дополнительные деления на градусы.

Структура исследовательской работы:

  • На доске закрепим транспортир с кюветой.
  • В кювету налили 100 мл исследуемой жидкости.
  • Над кюветой поместили осветитель с диафрагмой с узкой щелью под углом 40°.
  • Изменяя концентрацию раствора жидкости, занесли значения полученных углов преломления в таблицу.
  • Вычислили значения показателя преломления.
  • По полученным значениям построили графики зависимости показателя преломления от концентрации раствора.

В результате экспериментов, проведенных со спиртом, медным купоросом и перекисью водорода, мы получили следующие результаты:

Показатели преломления в растворе спирта

График зависимости показателя преломления от концентрации спирта в растворе

Показатели преломления в растворе CuSO4

График зависимости показателя преломления от концентрации CuSO4 в растворе

Показатели преломления в перекиси водорода (Н2О2)

Итоговые результаты

/p>

Выводы

  1. Показатель преломления увеличивается с возрастанием процентного содержания спирта в растворе до тех пор, пока концентрация спирта не достигает 70%, после этого коэффициент преломления не изменяется, как бы мы не увеличивали содержание спирта.
  2. Коэффициент преломления раствора перекиси водорода практически прямо пропорционален концентрации вещества в растворе и возрастает с увеличением содержания перекиси водорода в растворе.
  3. Коэффициент преломления раствора медного купороса также почти прямо пропорционален содержанию вещества в растворе.
  4. Для всех растворов общей точкой является 1,33 – показатель преломления воды, где содержание других веществ 0%.
  • 5. Применение рефрактометрии для идентификации в-ва и контроля качества.
  • 6. Физ. Основы поляриметрического метода.
  • 7. Зав-мость угла вращения плоскости поляризации от строения в-ва.
  • 10. Физ. Основы нефелометрии и турбидиметрии.
  • 11. Приборы нефелометрического анализа.
  • 12. Применение нефелометрии и турбидиметрии.
  • 13. Основные характеристики электромагнитного излучения. Классификация методов спектрального анализа.
  • 14.Физ. Основы спектрального анализа.
  • 15. Типы и хар-тер электронных переходов.
  • 16. Зависимость числа доп.Энерг.Сост. От положения в таблице.
  • 17. Классиф. Хим.Элементов по способности к возбужд. И иониз.
  • 18. Схемы энергетических переходов в атомах.
  • 20. Зависимость длин волн рез.Спектр.Линий от полож.В таблице.
  • 22. Факторы, влияющие на интенсивность спектр.Линий в спектрах атомной эмиссии.
  • 23. Ширина спектральной линии. Причины уширения.
  • 24. Схемы энергетических переходов в молекулах.
  • 26*. Условия и механизм атомизации и возбуждения в-ва в пламенной атомно-эмиссионной спектроскопии.
  • 27. Условия и механизм атомизации и возбуждения в-ва в дуговой и искровой атомно-эмиссионной спектроскопии.
  • 25. Блок-схема и функции основных узлов атомно-эмиссионного спектрометра. Основные характеристики атомно-эмиссионных спектрометров.
  • 28. Устройство и принцип действия трехтрубчатого плазмотрона для атомно-эмиссионного анализа с индуктивно-связанной плазмой.
  • 29. Способы выделения аналитических спектральных линий элементов из полихроматического излучения анализируемого образца. Схема и принцип действия монохроматора дисперсионного типа.
  • 30. Типы детекторов атомно-эмиссионных спектрометров. Принцип их действия.
  • 33. Достоинства и недостатки фотографической регистрации спектров атомной эмиссии.
  • 31. Основы качественного атомно-эмиссионного анализа. Определение длин волн характеристических спектральных линий элементов.
  • 33. Определение интенсивности спектральной линии элемента при фотографической регистрации спектра.
  • 34. Полуколич. Метод сравнения в атомно-эмиссионном анализе.
  • 35. Полуколичественный метод гомологических пар в атомно-эмиссионном анализе.
  • 36. Полуколичественный метод появления и усиления спектральных линий в атомно-эмиссионном анализе.
  • 32. Уравнение Ломакина-Шейбе.
  • 37. Методы точного количественного атомно-эмиссионного анализа с использованием стандартов.
  • 38-39. Общие положения теории аас.
  • 41. Пламенная атомизация в атомно-абсорбционном анализе: условия проведения, механизм
  • 29. Монохроматоры
  • 39. Конструкция и принцип действия безэлектродной газоразрядной лампы.
  • 30. Детекторы
  • 26. Подготовка проб к анализу методами оптической атомной спектроскопии
  • 45. Физические основы рентгеноспектрального анализа.
  • 46. Схема возбуждения и испускания рентгеновских спектральных линий. Критический край поглощения.
  • 47. Диспергирующие и детектирующие устройства рентгеновских спектрометров.
  • 48. Основы кач-го и кол-го рентгеноспектрального анализа
  • 49. Схема проведения, достоинства и недостатки рентгено-эмиссионного анализа.
  • 50. Схема проведения, достоинства и недостатки рентгено-флуоресцентного анализа.
  • 3. Дисперсия показателя преломления. Зависимость показателей преломления от температуры, давления. Мольная рефракция.

    Электромагнитная теория Максвелла для прозрачных сред связывает показатель преломления n и диэлектрическую постоянную  уравнением: =n 2 (1). Поляризации Р молекулы связана е диэлектрической проницае­мостью среды: Р = Р деф +Р ор = (-1)/(+ 2) (М /d) = 4/3 N A , (2) где Р деф - деформационная поляризация; Р ор –ориентационная поляризация; М- молекулярная масса вещества; d-плотность вещества; N A -число Авагадро; - поляризуемость молекулы. Подставив в уравнение (2) n 2 вместо  и  эл, вместо , получим (n 2 - 1)/ (n 2 + 2) (М /d) = 4/3 N A  эл =Р эл = R M (3) Эту формулу называют формулой Лорентца-Лоренца, величина R M в ней - мольная рефракция. Из этой формулы следует, что величина R M , определяемая через показатель преломления вещества, служит мерой электронной поляризации его молекул. В физико-химических исследованиях пользуются также удельной рефракцией: г = R M / М = (n 2 1)/ (n 2 + 2) (1/d) (4)

    Мольная рефракция имеет размерность объема, отнесенного к 1 моль вещества (см 3 /моль), удельная рефракция - размерность объема, отнесенного к 1 грамму (см 3 /г). Приближенно рассматривая молекулу как сферу радиуса г м с проводящей поверхностью, показано, что  эл = г M 3 . В этом случае R M = 4/3  N A г 3 (5), т.е. мольная рефракция равна собственному объему молекул 1 моля вещества. Для неполярных веществ R M =P, для полярных R M меньше Р на величину ориентационной поляризации.

    Как следует из уравнения (3), величина мольной рефракции оп­ределяется только поляризуемостью и не зависит от температуры и агрегатногосостояниявещества, т.е. является характеристической константой вещества.

    Рефракция - это мера поляризуемости молекулярной электрон­ной оболочки. Электронная оболочка молекулы слагается из оболочек атомов, образующих данную молекулу. Поэтому, если приписать оп­ределенные значения рефракции отдельным атомам или ионам, то рефракция молекулы будет равна сумме рефракций атомов и ионов. Рассчитывая рефракцию молекулы через рефракции составляющих ее частиц, необходимо учитывать валентные состояния атомов, особен­ности их расположения, для чего вводят особые слагаемые- инкре­менты кратных (двойной и тройной углерод-углеродной) и других связей, а также поправки на особое положение отдельных атомов и группв молекуле: Rm= Ra+Ri, (6), где R A и Ri - атомные рефракции и инкременты кратных связей соот­ветственно,которые приведены в справочниках.

    Уравнение (6) выражает правило аддитивности мольной реф­ракции. Физически более обоснован способ расчета мольной рефрак­ции как суммы рефракций не атомов, а связей (С-Н, О-Н, N-H и т.п.), поскольку светом поляризуются именно валентные электроны, обра­зующие химическую связь.

    Мольную рефракцию соединений, построенных из ионов, рас­считывают как сумму ионных рефракций.

    Правило аддитивности (6) может быть использовано для установления строения молекул: сравнивают Rm, найденную из данных опыта по уравнению(3), с рассчитанной по уравнению (6) для предполагаемой структуры молекулы.

    В ряде случаев наблюдается т.н. экзальтация рефракции, состоящая в значительном превышении экспериментального значения R M no сравнению с вычисленным по уравнению (6). Экзальтация рефракции указывает на наличие в молекуле сопряженных кратных связей. Экзальтация рефракция в молекулах с такими связями обусловлена тем, что -электроны в них принадлежат всем атомам, образую­щим систему сопряжения и могут свободно перемещаться вдоль этой системы, т.е. обладают высокой подвижностью и, следовательно, повышенной поляризуемостью в электромагнитном поле.

    Аддитивность имеет место и для рефракции жидких смесей и растворов - рефракция смеси равна сумме рефракций компонентов, отнесенных к их долям в смеси. Для мольной рефракции бинарной смеси в соответствии с правилом аддитивности можно записать: R=N 1 R 1 +(1 N 1)R 2 , (7)

    для удельной рефракции r = f 1 r 1 + (lf 1)r 2 (8), где N 1 и f 1 - мольная и весовая доли первого компонента.

    Эти формулы можно использовать для определения состава смесей и рефракции компонентов. Кроме химического строения вещества, величину его показателя преломления определяет длина волны падающего света и температура измерения. Как правило, с увеличением длины волны показатель преломления уменьшается, но для некоторых кристаллических веществ наблюдается аномальный ход этой зависимости. Чаще всего показа­ли, преломления определяют для длин волн (желтая линия Na-линия D-589нм, красная линия водорода-линия С-656нм, синяя линия водорода-линия F-486нм).

    Зависимость рефракции или показателяпреломлении света от длины волныназывается дисперсией. Мерой дисперсии может яв­ляться разностьмежду значениями показателей преломления, изме­ренными при различных длинах волн, т.н. средняя дисперсия. Мерой дисперсии -относительная дисперсия: F , C , D =(n f – n C)/(n D -l)]10 3 (9), где n f , n C , n D - показатели преломления, измеренные для линий F и С водорода и D-линии натрия. Относительная дисперсия  F , C , D очень чувствительна к присутствию и положению в молекуле двойных свя­зей.

    Величина показателя преломления вещества зависит также от температуры измерения. При понижении температуры вещество ста­новится более оптически плотным, т.е. показатель преломления уве­личивается. Поэтому при проведении рефрактометрических измере­ний необходимо проводить термостатированние рефрактометра. Для газов показатель преломления зависит и от давления. Общая зависимость показателя преломления газа от температуры и давления выражается формулой: n-1=(n 0 -1)(Р/760)[(1+Р)/(1+t) (10), где n - показатель преломления при давлении Р и температуре t ° C ; n 0 - показатель преломления при нормальных условиях; Р - давление к мм рт. ст.;  и  - коэффициенты, зависящие oт природы газа.

    Дисперсия света - это зависимость показателя преломления n вещества от длины волны света (в вакууме)

    или, что то же самое, зависимость фазовой скорости световых волн от частоты:

    Дисперсией вещества называется производная от n по

    Дисперсия - зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.

    Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)

    Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия

    оказывается положительной и называется аномальной (рис. 6.7, область 2–3).

    Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
    (штриховая кривая) от длины волны
    l вблизи одной из полос поглощения ()

    Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).


    Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
    длин волн пучок разлагается на монохроматические составляющие - на экране возникает спектр

    Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).

    Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).


    Рис. 6.9. Возникновение радуги

    Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).


    Рис. 6.10. Расположение радуги

    Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя - в красный. Радуги третьего и высших порядков наблюдаются редко.

    Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.

    При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:

    где v - скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно

    Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:

    Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:

    где - амплитуда напряженности электрического поля в световой волне, - фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде

    где, - собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили

    Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.

    Атом со смещенным электроном приобретает дипольный момент

    (для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде

    В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:

    Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:

    С другой стороны, как известно,

    где - диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением

    В результате получаем выражение для квадрата показателя преломления вещества:

    Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.

    Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны

    Учитывая связь частоты с длиной электромагнитной волны в вакууме

    можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):

    Длины волн, соответствующие собственным частотам колебаний , - постоянные коэффициенты.

    В области аномальной дисперсии () частота внешнего электро­маг­нитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.

    Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» - расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн - совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).

    Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме

    Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной

    где - волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).

    Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.

    Во многих случаях показатель преломления бинарных растворов линейно изменяется с составом раствора. Зависимость показателя преломления растворов от концентрации устанавливается эмпирически для каждого отдельного вещества, методом построения калибровочной кривой. Готовят серию растворов известных концентраций, измеряют их показатели преломления и строят калибровочный график в координатах концентрация - показатель преломления.

    Концентрацию двухкомпонентных растворов можно также вычислить, пользуясь формулой:

    где х - концентрация раствора, % (масс.); n - показатель преломления раствора; n0 - показатель преломления растворителя при той же температуре; F - фактор, равный величине прироста показателя преломления при увеличении концентрации на 1 % (устанавливается экспериментально).

    Если разница в показателях преломления составляющих раствор компонентов равна примерно 0,1, то точность определения концентрации может составить сотые доли процента.

    Показатель приломления

    Чаще всего для количественной оценки преломления света используют показатель преломления. Различают понятия абсолютного и относительного показателя преломления. Преломление света связано с изменением скорости света при переходе из одной среды в другую.

    Абсолютный показатель преломления света– это отношение скорости распространения света в вакууме к скорости прохождения света в другой среде. Показатель преломления не может быть меньше единицы, так как скорость света в вакууме – максимальная.

    Относительный показатель преломления света– это отношение скорости распространения света в одной среде к скорости прохождения света в другой среде. Так как показатель преломления не может быть меньше единицы, под первой средой всегда имеется в виду менее оптически плотная.

    Согласно закону преломления света относительный показатель преломления света равен отношению синуса угла падения к синусу угла преломления:

    Показатель преломления зависит от природы вещества, температуры, длины волны падающего света, концентрации (для растворов) и давления (для газов).

    9. Мольная, удельная рефракция. Зависимость от различных факторов. Расчет рефракции.

    Установлено, что не сам показатель преломления, а некоторая функция от него прямо пропорциональна плотности:

    f (n ) = r ×ρ,

    где f (n ) – некоторая функция показателя преломления;

    r – коэффициент пропорциональности, называемый удельной рефракцией ;

    ρ – плотность.

    Согласно формуле Лоренц – Лорентца , эта функция имеет вид:

    При умножении удельной рефракции на молярную массу получаем молярную рефракцию :

    Удельная и молярная рефракции не зависят от внешних условий – температуры, давления, агрегатного состояния вещества.

    Приёмы нахождения неизвестной концентрации

    В рефрактометрии используют следующие приёмы нахождения концентрации по величине аналитического сигнала:

    § Метод градуировочного графика . Можно использовать даже в случае нелинейной зависимости (рис.).

    § По специальным рефрактометрическим таблицам n – ω, которые составлены для многих веществ.

    § Метод стандартов – по значению аналитического рефрактометрического фактора F .


    Зависимость показателя преломления раствора

    от массовой доли определяемого компонента.

    10. Аппаратура для рефрактометрических измерений.
    Рефрактометры типа Аббе и типа Пульфриха.

    Рефрактометры

    Рефрактометры различаются диапазонами измерения и источниками света. Если для освещения используется белый свет, в состав прибора входят часто также призмы для компенсации различия в длине волны. Благодаря этому можно определять показатель преломления при длине волны желтой линии D спектра натрия, проводя измерения при дневном свете или при свете лампы накаливания.

    Из многих типов рефрактометров, предназначаемых для непосредственного измерения показателя преломления жидких и твердых веществ по предельному углу преломления или полного внутреннего отражения, их средней дисперсии и для определения концентрации растворов, рассмотрим как основные два отечественных рефрактометра типа Аббе - рефрактометр УРЛ и рефрактометр ИРФ-22.

    Рефрактометр Аббе

    Имеет шкалу для отсчета показателя преломления от 1,300 до 1,700. Измерения могут проводиться в проходящем и в отраженном свете. Главными узлами рефрактометра (рис. 119) являются призменный блок 3, установочная лупа 1 и стеклянный лимб с отсчетным микроскопом 5.

    Призменный блок состоит из двух призм (измерительной и осветительной), на поверхности которых тонким слоем распределяется анализируемая жидкость (около 0,05 мл). Призменный блок может быть нормальным или оснащенным проточным приспособлением. Проточный призменный блок предназначается для анализа непрерывно протекающих жидкостей, в том числе и легколетучих. В проточном блоке над поверхностью измерительной призмы имеется узкий промежуток, через который и протекает анализируемая жидкость. Призменный блок термостатируется. Блок имеет собственный источник света (на 6 В и 1,8 Вт), закрепленный зажимным патроном перед измерительной призмой для измерений в проходящем или отраженном свете. Нормальный призменный блок 3 применяется для анализа отдельных проб жидкостей, а также твердых и пластических веществ.

    Установочная лупа 1 служит для наблюдения за предельной линией полного внутреннего отражения. Встроенный в ней компенсатор - призма Амичи - используется для устранения цветной каемки вдоль предельной линии и получения четкого изображения этой линии. В окуляре отсчетного микроскопа, связанного с установочной лупой, видны деления для отсчета показателя преломления. Поле зрения окуляра освещается дневным светом или светом от лампы накаливания через зеркало, установленное на призменном блоке.

    При измерении в проходящем свете световой поток падает в осветительную призму через зеркало 6 или непосредственно от источника света, установленного на призменном блоке, проходит через пробу анализируемого вещества и попадает в измерительную призму. Затем свет поступает в установочную лупу. При измерении в отраженном свете он падает непосредственно в измерительную призму, затем отражается от смоченной пробой поверхности измерительной призмы и попадает в установочную лупу.

    При измерениях в обоих случаях в поле зрения окуляра установочной лупы наблюдается светлое и темное поля (рис. 120). Линия раздела между обоими полями соответствует углу полного внутреннего отражения. При измерении в проходящем свете достигается большая контрастность светлого и темного полей; при измерении в отраженном свете оба поля менее контрастны. При освещении белым светом линия раздела сначала получается с цветной каемкой. Эта каемка устраняется вращением маховичка 2 (см. рис. 119) дисперсионного компенсатора. Вращением маховичка 4 устанавливают полученную бесцветную линию на точку пересечения крестовины. При этом одновременно поворачивается лимб. Через микроскоп делают отсчет показателя преломления или содержания сухого вещества в исследуемом растворе, например на рис. 121:

    Мутные жидкости, пластические вещества, а также сильно окрашенные жидкости можно измерять только в отраженном свете.

    С помощью рефрактометра Аббе определяют концентрацию растворов и проводят испытание жидкостей на чистоту, контроль шлифов, пластичных и твердых веществ. Им можно исследовать водные, спиртовые, эфирные и другие растворы; масла и воски; фруктовые соки, сиропы, сахарные растворы; жиры, растительные масла, настойки, напитки, смолы и пластмассы. Выпускается в СССР и в ГДР.