Самодельный плазморез. Плазморез из сварочного инвертора своими руками Аппарат для плазменной сварки руками

Плазменная резка — это метод обработки металлических пустых частей плазменным потоком. Этот метод позволяет разрезать металл, так как его достаточно, чтобы он выполнялся таким образом, чтобы материал имел электропроводность. По сравнению с аналогичными методами плазменная резка металлов позволяет осуществлять более быстрый и качественный процесс без использования массивных роликов и специальных добавок.

Таким образом, можно обрабатывать различные металлические металлические листы, трубы разных диаметров, фасонные и сортированные изделия. Во время обработки получается качественный срез, что требует минимальных усилий по очистке. Даже с помощью этой технологии можно устранить различные недостатки с металлической поверхности, такие как выпуклости, швы и неровности, и подготовиться к сварке, сверлению и другим операциям.

Плазменная резка листового металла является чрезвычайно эффективным методом.

В отличие от других методов, он может использоваться для обработки черных и цветных металлов. По этой причине нет необходимости готовить поверхность и очищать ее от загрязняющих веществ, что может затруднить воспламенение дуги. В отрасли основным конкурентом этого метода является лазерная обработка, которая имеет еще большую точность, но также требует значительно более дорогих установок.

В домашних условиях эквивалентными конкурентами плазменного устройства нет.

Качество плазменной резки металлов

Технология плазменной резки

Плазменная резка осуществляется с использованием специального устройства, которое имеет размеры, аналогичные размерам обычного сварочного аппарата. Вначале эти устройства имели большие размеры, но во время улучшения они стали меньше.

Устройство подключено к источнику питания 220 В для бытовых приборов и 380 В для промышленного применения.
В процессе производства резка осуществляется с помощью станков с ЧПУ, которые представляют собой одну или несколько горелок с механизмами их перемещения.

Машина может реализовать меры по конкретной программе, что значительно облегчает работу в одном и том же разрезе нескольких листов.

Для создания плазменной струи необходимо подключить систему к компрессору или воздушной линии.

Сжатый воздух, подаваемый на устройство, должен быть очищен от грязи, пыли и влаги. С этой целью перед устройством установлены воздушные фильтры и осушители. Без таких устройств износ электродов и других элементов будет ускоряться быстрее. Плазменные горелки с жидкостным охлаждением также нуждаются в сантехнике.

Ручная резка стальной трубы

Круговая резка стальной трубы
самоходная машина

Технология воздушной плазменной резки позволяет достичь качественных кромок (без сосания и решетки) и отсутствия деформации (также на листовых листах с низким толстым слоем).

Это позволяет проводить последующую сварку очищенного металла без предварительной обработки.

Ручная резка металлов на образце

Сущность плазменного листа

Плазменная резка стали в повседневной жизни осуществляется устройствами, вдоль которых длина труб достигает 12 м.

Ручные устройства имеют режущую головку, оборудованную ручкой с электроприводом. В таких устройствах используется воздушное охлаждение, поскольку оно проще в конструкции и не требует дополнительных холодильных установок. Водяное охлаждение используется в промышленных установках, где плазменная резка стального листа осуществляется более эффективно, но цена устройств выше.

Кислородно-плазменная технология

Для резки кислородной плазмой требуется специальный электрод и сопло, которое имеет значительный температурный эффект в качестве расходного материала. Во-первых, начинается вспомогательная дуга, которая возбуждается разрядом, вызванным генератором постоянного тока. Благодаря дуге создается плазменная горелка длиной 20-40 мм. Когда факел касается металла, появляется рабочая дуга, и вспомогательный лук выключается.

Как сделать плазменный сварочный аппарат своими руками?

Таким образом, плазма действует как направляющая между устройством и заготовкой. Arisen arc является самодостаточным, создавая плазму из-за ионизации молекул воздуха.

Плазменная резка с использованием рабочей жидкости при температуре до 25000 ° С.

Плазменная резка труб большого диаметра и других резервуаров

Плазменная резка и сварка могут выполняться в мастерских и мастерских, а также на открытом воздухе.

Возможно, этот метод нельзя назвать эффективным, как газовая электростанция, для ремонта и строительных работ, при отсутствии центральной системы для электричества и сжатого воздуха. В этом случае для обеспечения мощности устройства и компрессора необходим достаточно сильный генератор.

Подобно разрезанию газового пламени, этот метод можно использовать для обработки пустых частей разных размеров и форм.

Плазменная резка труб большого диаметра не создает никаких проблем: она выполняется вручную или с помощью самоходных машин. Фиксированная горелка вращается снаружи трубки. Использование самоходных машин обеспечивает точную и ровную резку. Работа с формованными и сортированными прокатными изделиями также может быть автоматизирована в промышленных условиях.

Преимущества использования устройств SIBERIAN:

  • Универсальность (возможность нанесения на любой металл, включая цветные и тугоплавкие металлы);
  • Скорость резания;
  • Высокое качество поверхности после резки;
  • Экономика (с использованием сжатого воздуха);
  • Почти полное отсутствие термических деформаций на подлежащем сокращению продукте;
  • Мобильность, а не тяжелый вес агрегатов с воздушным охлаждением;
  • Прост в использовании.

Устройства для поджига дуги

Устройства для первоначального поджига дуги делятся на два класса: поджиг дуги от короткого замыкания и путем пробоя промежутка электрод-изделие высоковольтными импульсами.

Поджиг коротким замыканием осуществляется путем кратковременного контакта электрода и изделия и последующего их разведения. Ток, через микровыступы электрода, разогревает их до температуры кипения, а поле, возникающее при разведении электродов, обеспечивает эмиссию электронов, достаточную для возбуждения дуги.

При таком поджиге возможен перенос материала электрода в сварной шов. Для устранения этого нежелательного явления зажигание должно осуществляться при малом токе, не превышающем 5-20А. Устройство для поджига должно обеспечивать малый ток короткого замыкания, поддержание тока на этом уровне до момента образования дуги и лишь затем плавное нарастание до рабочего.

(УДГ-201, АДГ-201, АДГ-301).

Основные требования к устройствам для поджига через зазор (возбудителям дуги или осцилляторам):

1) должен обеспечить надежное возбуждение дуги;

2) не должен угрожать безопасности сварщика и оборудования.

Возбудители могут быть предназначены для возбуждения дуги постоянного или переменного тока. В последнем случае к возбудителям предъявляется ряд специфических требований, относящихся к моменту поджига дуги. Схема осциллятора ОСПЗ – 2М показана на рис.

Рис. 5.5. Принципиальная электрическая схема осциллятора ОСПЗ-2М. F1 – предохранитель; ПЗФ – фильтр защиты от помех; TV1 – трансформатор повышающий; FV – разрядник; Cг – конденсатор колебательного контура; Cn – разделительный конденсатор; TV2 – высоковольтный трансформатор; F2 – предохранитель.

Конденсатор Сг заряжается от напряжения вторичной обмотки повышающего трансформатора TV1.

После зарядки его до напряжения пробоя разрядника FV образуется колебательный контур, состоящий из конденсатора Сг и первичной обмотки высоковольтного трансформатора TV2. Частота колебаний этого контура примерно равна 500 – 1000 кГц. Со вторичной обмотки это напряжение частотой 500 – 1000 кГц и величиной порядка 10000 В через разделительный конденсатор Cn и предохранитель F2 подается на промежуток электрод – изделие.

При этом в данном промежутке возникает искра, которая ионизирует промежуток, вследствие чего от источника питания возбуждается электрическая дуга. После возбуждения дуги осциллятор автоматически отключается.

Необходимо обратить внимание, что у осциллятора высокое напряжение.

Для человека оно не опасно вследствие маломощности источника. Однако если в схеме источника имеются полупроводники (диоды, тиристоры и др.), то возможен их пробой напряжением осциллятора.

Для исключения этого осциллятор необходимо подключать к источнику с использованием систем защиты (рис. 5.6).

Как сделать плазморез своими руками из инвертора?

Схема подключения осциллятора к источнику питания.

Дроссель зашиты ДЗ для высокой частоты осциллятора имеет очень большое индуктивное сопротивление и не пропускает напряжение осциллятора к источнику.

Защитный конденсатор СЗ, наоборот, имеет очень малое сопротивление для высокой частоты, защищая источник от высокочастотного и высоковольтного напряжения осциллятора. Разделительный конденсатор Ср защищает осциллятор от напряжения источника питания.

Рекомендации. Типичные ошибки оператора МТР при плазменной резке и способы их избежания

Использование расходных материалов до тех пор, пока они не выйдут из строя

Если посмотреть на ряд деталей одного типа, которые были вырезаны при таком подходе, можно безошибочно определить те детали, на которых сопло или электрод были уже «на подходе».

Использование сильно изношенных сопел и электродов может не только привести к браку при вырезке детали, но и стать причиной дорогостоящего ремонта пламенного резака и даже аппарата плазменной резки, во время которого машина плазменной резки будет простаивать.

Выход из строя сопел и электродов можно легко предупредить по нескольким признакам, которые выдают изношенные расходники. Опытный оператор по звуку резки и цвету пламени дуги (при выгорании циркониевой вставки оно приобретает зеленоватый оттенок), а также по необходимости уменьшать высоту плазмотрона при пробивке, всегда скажет Вам, когда пора менять электрод.

Также, одним из лучших способов оценки состояния деталей резака является качество реза. Если качество реза внезапно начинает ухудшаться, то это повод проверить состояние сопла и электрода. Разумным подходом является ведение журнала со средним временем работы электрода или сопла от замены до замены. Сопло и электрод могут выдерживать разное количество пробивок в зависимости от тока резки, типа и толщины материала.

Например, при резке нержавеющей стали требуется более частая замена расходников.

Однажды определив по такому журналу среднее время жизни электрода для каждого конкретного вида вырезаемых деталей, можно выполнять плановую замену сопел и электродов, не доводя до появления брака в вырезаемых деталях или до поломки пламенного резака.

Слишком частая замена сопел и электродов

Среди использованных сопел и электродов достаточно часто можно встретить такие, которые еще можно использовать при резке.

Излишне частая замена расходников также очень распространена среди операторов металлорежущих станков с ЧПУ, и в особенности, машин плазменной резки.

При замене сопла или электрода оператор должен четко знать, на что обращать внимание. Сопло требует замены в следующих ситуациях:

1. Если сопло имеет деформации снаружи или изнутри.

Это часто бывает при слишком маленькой высоте пробивки и при непрорезе металла. Расплавленный металл попадает на внешнюю поверхность сопла или защитного колпака и деформирует ее.

2. Если выходное отверстие сопла по форме отличается от окружности. При большой высоте пробивки, если движение начинается до прореза металла, то дуга отклоняется от перпендикуляра к листу и проходит через край отверстия сопла.

Чтобы определить, изношен ли электрод, нужно посмотреть на вставку из металла серебристого цвета на торце медного электрода (как правило, используется сплав циркония, гафния или вольфрама). В общем случае, электрод считается работоспособным, если этот металл вообще есть и глубина лунки на его месте не превышает 2 мм для воздушно-плазменной или кислородно-плазменной резки. Для резки плазмой в среде защитного газа (азота или аргона) глубина лунки может достигать 2,2 мм. Завихритель нуждается в замене лишь в том случае, если при тщательном осмотре можно выявить забитые отверстия, трещины, следы вызванные попаданием дуги, или сильный износ.

Завихрители особенно часто заменяются преждевременно. То же самое касается и защитных колпаков которые нуждаются в замене только в случае физического повреждения. Очень часто защитные колпачки могут быть очищены наждачной бумагой и использованы вновь.

Использование неправильных настроек параметров плазменной резки и расходных материалов

Выбор расходников при плазменной резке зависит от вида разрезаемого металла (сталь, медь, латунь, нержавейка и т.д.), от его толщины, выставленного тока дуги на аппарате плазменной резки, плазмообразующего и защитного газов и т.д.

Справочное руководство оператора машины плазменной резки описывает, какие расходные материалы использовать в случае разных режимов процесса резки. Указанные в инструкции оператора режимы, рекомендации относительно настроек плазменной резки следует соблюдать.

Использование расходных материалов (сопел, электродов) несоответствующих текущему режиму плазменной резки обычно приводит к ускоренному выходу расходников из строя и к значительному ухудшению качества пламенного реза.

Очень важно выполнять плазменную резку металла именно с тем током дуги, на который рассчитаны используемые расходные материалы. Например, не стоит резать металл плазмой на 100 амперах, если в плазменном резаке стоит сопло на 40 ампер, и т.д.

Самое высокое качество реза достигается, когда ток на аппарате плазменной резки выставлен на 95% от номинального тока резки, на который рассчитано сопло. Если установлен режим плазменной резки с заниженным током дуги, то рез будет зашлакованный, и на обратной стороне вырезаемых деталей будет значительное количество грата, пламенный рез будет неудовлетворительного качества.

Если установленный на установке плазменной резки ток слишком высок, то срок службы сопла значительно сокращается.

Неправильная сборка плазменного резака

Пламенный резак должен быть собран таким образом, чтобы все его детали плотно прилегали друг к другу, и не было бы впечатления «разболтанности».

Плотность прилегания деталей плазмотрона обеспечивает хороший электрический контакт и нормальную циркуляцию воздуха и охлаждающей жидкости через плазменный резак. Во время замены расходных материалов нужно стараться разбирать плазменный резак на чистой поверхности, чтобы грязь и металлическая пыль, образующиеся при плазменной резке, не загрязнили плазмотрон.

Чистота при сборке/разборке плазменного резака очень важна и, тем не менее, это требование часто не соблюдается.

Невыполнение регулярного планового обслуживания плазмотрона

Плазменный резак может работать в течение многих месяцев, и даже лет без должного обслуживания.

И, тем не менее, газовые каналы и каналы охлаждающей жидкости внутри плазменного резака должны содержаться в чистоте, посадочные места сопел и электродов должны проверяться на предмет загрязнения или повреждений. Грязь, металлическая пыль должны удаляться из плазменного резака. Для чистки плазмотрона следует использовать чистую хлопчатобумажную тряпочку и жидкость для чистки электрических контактов либо перекись водорода.

Резка металла без проверки давления плазмообразующего газа или подачи охлаждающей жидкости в плазморез

Расход и давление плазмообразующего газа и охлаждающей жидкости нужно проверять ежедневно.

Если расход недостаточный, детали резака не будут в должной степени охлаждаться и их срок службы будет снижен. Недостаточный проток охлаждающей жидкости из-за изношенного насоса, забитых фильтров, недостаточного количества охлаждающей жидкости, является распространенной причиной поломок плазменных резаков.

Постоянное давление плазмообразующего газа очень важно для поддержания режущей дуги и для качественного реза. Избыточное давление плазмообразующего газа является распространенной причиной затрудненного поджига плазменной дуги, притом, что все остальные требования к настройкам, параметрам и процессу плазменной резки полностью удовлетворены. Слишком высокое давление плазмообразующего газа является причиной быстрого выхода из строя электродов.

Плазмообразующий газ обязательно должен быть очищен от примесей, т.к. его чистота оказывает сильное влияние на срок службы расходных материалов и плазмотрона в целом. Компрессоры, подающие воздух в аппараты плазменной резки имеют тенденцию к загрязнению воздуха маслами, влагой и мелкими частицами пыли.

Пробивка при малой высоте плазмотрона над металлом

Расстояние между заготовкой и срезом сопла плазмотрона оказывает огромное влияние, как на качество реза, так и на срок службы расходных материалов.

Даже небольшие изменения в высоте плазменного резака над металлом могут значительно повлиять на скосы на кромках вырезаемых деталей. Высота плазменного резака над металлом во время пробивки особенно важна.

Распространенной ошибкой является пробивка при недостаточной высоте плазмотрона над металлом. Это приводит к тому, что расплавленный металл выплескивается из лунки, образованной при пробивке и попадает на сопла и защитные колпачки, разрушая эти детали.

Тем самым существенно ухудшается качество реза. Если пробивка происходит, когда плазменный резак касается металла, то может произойти «втягивание» дуги.

Если дуга «втягивается» в плазмотрон, то электрод, сопло, завихритель, а иногда, и резак целиком — разрушаются.

Рекомендуемая высота пробивки равна 1.5-2 величины толщины разрезаемого плазмой металла. Следует отметить, что при пробивке достаточно толстого металла рекомендуемая высота получается слишком большой, дежурная дуга не достает до поверхности листа металла, следовательно, процесс резки на рекомендуемой высоте начать невозможно. Однако если пробивка будет производиться на высоте, на которой плазморез может зажечь дугу, то брызги расплавленного металла могут попасть на плазмотрон.

Решением этой проблемы может быть применение технологического приема под названием «подпрыжка». При отработке команды на включение резки, плазменная резка включается на небольшой высоте, затем резак поднимается вверх на заданную высоту подпрыжки, на которой брызги металла не достают до резака.

После отработки пробивки резак опускается на высоту врезки и начинается движение по контуру.

Плазменная резка металла на слишком большой либо слишком малой скорости

Несоответствие скорости плазменной резки выбранному режиму существенно сказывается на качестве реза. Если установленная скорость резки слишком низкая, на вырезаемых деталях будет большое количество облоя и разнообразных наплывов металла по всей длине реза на нижней части кромки деталей.

Низкие скорости резки могут стать причиной увеличения ширины реза и большого количества брызг металла на верхней поверхности деталей. Если установлена слишком высокая скорость резки, дуга будет загибаться назад, вызывая деформацию кромок вырезаемой детали, будет узкий рез, и небольшие бусинки грата и облоя в нижней части кромки реза.

Грат образованный при высокой скорости резки тяжело удаляется. При правильно выбранной скорости резки количество грата, облоя и наплывов металла будет минимальным. Поверхность кромки пламенного реза при правильно выбранной скорости должна быть чистой и механическая обработка должна быть минимальной. В начале и конце реза может произойти «отклонение» дуги от перпендикуляра.

Самодельный плазморез из инверторного сварочного аппарата: схема и порядок сборки

Это происходит из-за того, что дуга не успевает за резаком. Отклонение дуги приводит к тому, что она врезается в боковую поверхность сопла, нарушая тем самым его геометрию. Если выполняется врезка с кромки, центр отверстия сопла должен находиться точно на линии кромки детали. Это особенно важно в комбинированных станках, в которых применяется и дыропробивная головка и плазморез.

Отклонение дуги может произойти и когда плазмотрон при включенной резке проходит через край листа, или если линия выхода из контура с резкой (lead out) пересекает старый рез. Необходима точная настройка параметров времени, чтобы уменьшить проявления этого эффекта.

Механическое повреждение или поломка плазменного резака

Столкновения резака с листом, вырезанными деталями или ребрами раскроечного стола могут полностью вывести резак из строя. Столкновений резака с вырезаемыми деталями можно избежать, если в управляющей программе задавать холостые проходы вокруг, а не над вырезанными деталями.

Например, в программе оптимального раскроя ProNest производства MTC-Software присутствует такая возможность, что позволяет свести риск поломки плазмотрона к минимуму и сэкономить значительные средства. Стабилизаторы высоты резака также обеспечивают некоторую защиту от столкновений с металлом. Однако, если используется только лишь датчик высоты резака по напряжению дуги, то в конце реза могут происходить «клевки», т.к. напряжение дуги меняется в результате ее «отклонения» и резак опускается вниз чтобы его компенсировать.

В системах ЧПУ применяется многоуровневая система защиты от столкновения с металлом. Используется как датчик касания, измеряющий сопротивление между антенной вокруг резака и листом, емкостной датчик и датчик напряжения дуги. Это позволяет в полной мере использовать преимущества каждого из типов датчиков. Также, для защиты резака можно применять «ломкие» кронштейны, которые при столкновении сломаются быстрее, чем плазменный резак.

Таким образом, грамотный оператор машины плазменной резки может сэкономить своему предприятию огромные деньги, время и накладные расходы на плазменную резку.

Результатом работы хорошего оператора МТР будет возросшая рентабельность плазменной резки и увеличение прибыли предприятия в целом.

На современном этапе развитии строительной техники наиболее часто применяется алмазная резка и бурение бетона.

Однако не исключаются и другие технологии резки высокопрочных материалов, например, технология плазменной резки бетона.

Эта технология была разработана и запатентована еще в конце 20 века.

Плазморез своими руками из инвертора для плазменной резки металла (7 фото + 2 видео)

А вот оборудование, которое работает по этому принципу только сейчас применять начали.

На чем же базируется принцип плазменной резки? Очень просто. Благодаря воздействию теплоты, вырабатываемой сжатой плазменной дугой, происходит при плавлении даже плотного материала, в том числе и бетона и железобетона. Затем струя горячей плазмы очень стремительно удаляет расплавленную массу.

Именно благодаря приобретению инертными газами электропроводящих свойств, а также их преобразованию в плазму осуществляется плазменная резка бетона.

Ведь плазма - это не что иное, как нагретый до сверхвысоких температур ионизированный газ, образуемый при подключении инструмента к конкретному источнику электроэнергии.

Плазмотрон - особое техническое устройство, генерирует плазму, сжимает электрическую дугу и вдувает в нее плазмогенерирующий газ.

Надо отметить, что эта технология приобретает все большую популярность среди специалистов в промышленной обработке материалов.

Отличие плазменной резки бетона от копьевой кислородной резки заключается в том, что в процессе резания материал очень интенсивно плавиться и из прорезанной борозды интенсивно выноситься.

В процессе обработке температура достигает 6000°С.

Увеличивает нагрев порошковое копье, используемое в плазменной резке, до 10000 - 25000°.

Специалистами в работе оборудования используется две различные технологии резки бетона: резка плазменной струей и технология плазменно-дуговой резки.

Чем же они отличаются?

Тем, что разрезающая дуга загорается при способе резки плазменной струей между электродом и образующим наконечником установки, а вот объект воздействия находится при этом вне электроцепи.

Из плазмотрона поступает высокоскоростная плазменная струя и именно ее мощная тепловая энергия режет железобетон, а также другие высокопрочные материалы.

При способе плазменно-дуговой резки плазменная дуга возгорается между неплавящимся электродом и плоскостью разрезаемого материала. Процесс разрезания происходит благодаря действию нескольких составляющих: энергии приэлектродного дугового пятна, а также столба плазмы и факела, вырывающегося из него.

Плазменно-дуговая резка считается у практиков наиболее эффективным и часто используется в обработке металла.

Технология резки плазменной струей в основном применяется с целью обработки не обладающих электропроводностью материалов.

Плазменная резка своими руками — технология работы

Меры безопасности при работе с плазменной лампой

Плазменная резка связана с рядом опасностей: электрический ток, высокая температура плазмы, горячие металлы и ультрафиолетовое излучение.

Меры безопасности при работе с плазменной резкой:

Подготовка машины для резки воздуха и плазмы для работы

Как соединить все элементы устройства для резки воздуха и плазмы, подробно описано в инструкциях к устройству, поэтому немедленно приступайте к дополнительным оттенкам:

  • Устройство должно быть установлено таким образом, чтобы воздух был доступен.

    Охлаждение корпуса плазменной резки позволяет работать дольше без прерывания и реже отключать охлаждающее устройство. Место должно быть таким, чтобы на устройстве не было капель расплавленного металла.

  • Воздушный компрессор соединен с плазменной горелкой через сепаратор влаго-масло. Это очень важно, потому что вода, попавшая в плазмотронную камеру или масляные капельки, может привести к разрушению всей плазмы или даже ее взрыву. Давление воздуха, передаваемое на плазмотрон, должно соответствовать параметрам устройства.

    Если давления недостаточно, плазменная дуга будет неустойчивой и часто гаснет. Если давление чрезмерно, некоторые элементы плазменной лампы могут стать бесполезными.

  • Если на обрабатываемую деталь наносят ржавчину, маску или масло, ее следует лучше очистить и удалить. Хотя воздушная резка является плазмой и позволяет вырезать коричневые части, лучше забыть, что токсичные пары выделяются при нагревании ржавчины.

    Если планируется резать резервуары, в которых хранятся легковоспламеняющиеся материалы, их следует тщательно очистить.

  • Если вы хотите, чтобы срез был гладким, параллельным, без окалины и язв, следует выбрать правильную скорость потока и скорости резания.

    В следующих таблицах приведены оптимальные параметры резания для разных металлов различной толщины.

Таблица 2. Мощность и скорость резания с плазменным плазменным устройством для пустых частей различных металлов.

Параметры плазменной резки воздуха

В первый раз, когда вы выбираете скорость горелки, это будет сложно, вам нужен опыт.

Таким образом, этот принцип может быть изначально управляться: необходимо управлять плазменной горелкой, чтобы искры были видны с задней части заготовки. Если искры не видны, заготовка не режется. Также обратите внимание, что слишком медленное управление ножом отрицательно влияет на качество разреза, на нем есть габариты и кора, а подмышка также может быть нестабильной для горения и даже выходить наружу.

Плазменная резка

Теперь вы можете продолжить процесс резания.

Перед воспламенением электрической дуги плазматрон должен быть барботирован воздухом для удаления случайной конденсации и посторонних частиц.

Для этого нажмите и отпустите кнопку зажигания. Таким образом, устройство переходит в метод очистки. Примерно через 30 секунд вы можете нажать и удерживать кнопку зажигания.

Как уже описано в принципе работы плазменной лампы, между электродом и кончиком сопла загорается вспомогательная (пилотная, пилотная) дуга. Как правило, он не горит более 2 секунд. Поэтому за это время необходимо осветить рабочую (режущую) дугу. Метод зависит от типа плазменной лампы.

Если плазменная вспышка работает прямо, необходимо выполнить короткое замыкание: после формирования длины поворота необходимо нажать кнопку зажигания — подача воздуха прекратится, и контакт закроется.

Затем воздушный клапан автоматически открывается, поток воздуха вытекает из клапана, ионизируется, увеличивает размер и истощает искру из сопла плазменной лампы. Поэтому загорается рабочая дуга между электродом и металлом детали.

Важно! Контактное зажигание дуги не означает, что плазматрон следует наносить или наложить на заготовку.

Зажигание плазменного пламени

Как только загорится индикатор, свет погаснет.

Если рабочая дуга не может быть впервые включена, вы должны отпустить кнопку зажигания и снова нажать ее — начинается новый цикл.

Особенности производства плазменной лампы с собственными руками от преобразователя: схема, рабочие ступени, оборудование

Существует несколько причин, по которым рабочая дуга не может быть освещена: недостаточное давление воздуха, недостаточная сборка плазменной лампы или другие повреждения.

Существуют также случаи, когда режущий диск выключен.

Причина, скорее всего, будет носить электрод или игнорировать расстояние между плазменным топливом и поверхностью заготовки.

Расстояние между лампой и металлом

Узнать больше:

Резка металла плазменной резкой с дистанционным отключением

Ручная пневматическая плазменная резка связана с проблемой наблюдения расстояния между горелкой / соплом и поверхностью металла.

При работе с рукой это довольно сложно, так как дыхание выходит из-под контроля, и вырезание оказывается неравномерным. Оптимальное расстояние между соплом и заготовкой составляет 1,6-3 мм, для наблюдения используются специальные распорки, поскольку сама плазма не может прижиматься к поверхности заготовки.

Лестницы расположены в верхней части насадки, затем плазматрон, установленный на заготовке, и разрезание.

Имейте в виду, что плазменная лампа должна быть жестко перпендикулярна заготовке. Допустимые отклонения от 10 до 50 °. Если заготовка слишком тонкая, резак можно держать в маленьком углу, что предотвратит сильные деформации тонкого металла.

Плавленный металл не должен падать в сопло.

Работать с плазменной резкой своими руками можно самостоятельно освоить, но важно помнить о мерах безопасности, но также, что сопло и электрод являются расходными материалами, которые требуют своевременной замены.

Связанные статьи

Вы можете быть заинтересованы

  • 1 Конструктивные особенности
  • 2 Конструкция плазмореза, советы по изготовлению аппарата
  • 3 Как функционирует плазморез
  • 4 Вентиляция при плазменной резке
  • 5 Самодельный плазморез схемы

Сделать плазморез своими руками из инвертора не так трудно, как кажется поначалу. Прежде чем начать самому изготавливать аппарат, нужно приготовить все необходимое:

  • плазменный резак (плазмотрон);
  • инверторное устройство либо трансформатор, выступающий источником электрического тока;
  • компрессор, c помощью которого будет образовываться воздушная струя, формирующая и охлаждающая плазменный поток;
  • кабели, шланги, предназначенные для соединения всех частей устройства.

Выбирая источник питания, необходимо принимать во внимание силу тока, вырабатываемую устройством. Зачастую используют инверторный инвертор, который делает процесс резки стабильным и позволяет экономить электрическую энергию. Инвертор, в отличие от трансформатора, мало весит и имеет небольшой размер, поэтому его удобно использовать. Главный недостаток плазмореза на основе инвертора – им трудно резать очень толстые заготовки.

Для изготовления плазмореза своими руками можете воспользоваться приведенными ниже схемами. Ниже также будет представлено видео, в которых объясняется процесс сборки оборудования. Необходимо строго следовать схеме, подбирать составные компоненты таким образом, чтобы части прибора подходили друг к другу.

Конструктивные особенности

Первое, что нужно отыскать для создания плазменного резака – это источник питания. Из него в плазменный резак для обработки металла будет поступать электрический ток с нужными параметрами. Обычно плазморез делается из сварочного инвертора. Применение трансформатора может обернуться высоким расходом электрической энергии. Необходимо помнить, что любое трансформаторное устройство для сварки обладает большим размером и много весит.

Важным компонентом прибора считается плазменный резак. Как раз от него зависит качество реза, эффективность его осуществления.


Для создания потока воздуха, превращающегося в струю плазмы, применяется компрессор. Электрический ток от инвертора/трансформатора и поток воздуха от компрессора поступают к резаку посредством кабельно-шлангового комплекса.

Плазмотрон заключает в себе такие части:

  • сопловое отверстие;
  • канал для прохождения потока воздуха;
  • электрод;
  • охлаждающий изолятор.

Как сделать плазморез из инвертора? Чтобы сделать своими руками прибор для плазменной резки, требуется подобрать оптимальный электрод. Обычно используются бериллиевые, ториевые, циркониевые, гафниевые электроды. На поверхности этих материалов при нагреве образуются тугоплавкие оксидные пленочки, препятствующие разрушительным процессам.

Определенные материалы, будучи разогретыми, выделяют токсичные вещества. Это необходимо принимать во внимание, подбирая электрод. Бериллиевые выделяют радиоактивные оксиды. Ториевые – пары, соединяясь с кислородом, производят высокотоксичные элементы. Безопаснее всего применять гафниевый электрод.



Плазморез для металла своими руками формирует поток посредством отверстия-сопла. От этой части прибора эффективность рабочего потока.

Оптимальный диаметр сопла – 15 миллиметров. Сопло отвечает за то, насколько точно и качественно будет резаться металл. Помните, что длинное сопло склонно к быстрому изнашиванию.



Плазморез для металла из инвертора своими руками в обязательном порядке должне располагать компрессором. Он создает и подает к отверстию кислородную струю. Применение воздуха под давлением в качестве рабочей и охладительной среды вместе с инверторным прибором, который подает электрический ток в 200 А, дает возможность эффективно резать детали из стали с толщиной до 50 миллиметров.

Чтобы подготовить плазморез к рабочему процессу, нужно соединить плазмотрон, инверторное устройство и компрессор. Для этого применяются кабели и шланги.

  • Кабель, по которому станет поступать электрический ток, служит для соединения инверторного устройства и электродного элемента.
  • Шланг для поступления сжатого воздуха служит, чтобы объединять компрессорный выход и плазмотрон.
  • Как функционирует плазморез

    Как сделать плазморез для металла своими руками? Чтобы понять это, нужно разобраться, как функционирует данный прибор. Когда включается инверторный аппарат, электрический поступает на электрод. Из-за этого зажигается дуга. Температура электрической дуги, которая загорается между рабочим электродом и металлическим концом соплового отверстия, равняется примерно 6000-8000 градусов. После зажигания дуги в сопловую камеру проникает воздух под давлением. Он проходит через электрический разряд. Электрическая дуга обеспечивает нагревание и ионизацию идущего через нее потока воздуха. Ввиду этого объем воздуха делается больше в 100 и более раз. Воздух получает возможность пропускать электрический ток.



    С помощью сопла из потока воздуха формируется плазменная струя. Ее температура быстро увеличивается, способна достигать 25000-35000 градусов. Скорость струи плазмы, посредством которой осуществляется разрезание металлических заготовок, на выходе из соплового отверстия равняется приблизительно 2-3 метрам в секунду. Когда плазменная струя касается поверхности заготовки из стали, электроток от электродного элемента начинает поступать по ней, а горящая дуга погасает. Новая дуга, которая загорается промеж электродного элемента и разрезаемой заготовки, называется режущей.

    Отличительной чертой плазменной резки считается то, что разрезаемый материал расплавляется лишь в той области, в которой на него действует струя плазмы. Ввиду этого необходимо делать так, чтобы участок плазменного воздействия располагался в центральной части электрода. Если проигнорировать данное требование, возможно столкнуться с тем, что нарушится плазменно-воздушный поток. Следовательно, снизится эффективность осуществления резки. Чтобы обеспечить соблюдение требований, воздух подается в сопло тангенциально.



    Не допускайте образования 2-х потоков плазмы вместо одного. Если не соблюдать режимы и правила осуществления технологического процесса, можно вывести инверторный аппарат из строя.

    Весьма значимой характеристикой резания посредством плазмы считается скорость струи воздуха. Она не должна быть очень высокой. Наилучшее соотношение качества резки и быстроты ее исполнения обеспечивается при скорости струи воздуха в 800 метров в секунду. Сила тока, который идет от инвертора, не должна быть больше 250 ампер. Разрезая металл в данном режиме, необходимо принять во внимание, что расход воздуха, который применяется для формирования потока плазмы, будет довольно большим.



    Собственноручно изготовить прибор для плазменного резания нетрудно. Нужно ознакомиться с теорией, посмотреть видеоролики и правильным образом выбрать составные части прибора. Плюс инверторного плазмореза заключается еще и в том, что посредством него возможно осуществлять не только резку, но и сварку.



    Если у вас нет инвертора, можете сделать плазменный резак из сварочного аппарата, т.е. трансформатора. Однако в таком случае аппарат будет иметь немаленькие габариты. Также минусом плазменного резака для металла, который сделан из трансформатора, является то, что он не слишком мобилен. Ввиду этого его трудно перемещать с одного места на другое. Это не слишком критично, если вы редко работаете с прибором. Однако если вам нужно часто выполнять разрезание металлических заготовок обязательно приступайте к созданию плазмореза из инвертора своими руками.

    Вентиляция при плазменной резке

    Вентиляция для плазменной резки необходима. Когда металл режется прибором, образуется дым, пылевые частички. Их нужно устранять из помещения, в котором проводятся работы. Для этого используются вентиляционные системы, дающие возможность решить данную проблему.

    Если плазменная резка выполняется ручным методом, используются наклонные подъемники. Они обеспечивают всасывание пылевых частичек. Стоит помнить, что нижняя часть такого приспособления не должна находиться выше, чем тридцать пять сантиметров над областью резания.

    Если режутся листы металлов крупного размера, применяются особые отсосные устройства. Для вентиляции также часто используются столы с коробом. Короб служит своего рода приемником различных частичек, образующихся при рабочем процессе. Основным требованием, которое выдвигается к такому столу, считается покрытие его поверхности на восемьдесят процентов обрабатываемыми листами. Это дает возможность обеспечить нужную скорость воздушного потока, всосать частички пыли и дымные элементы.



    Вентиляция для плазменного резания считается эффективной, если скорость воздушного потока равняется 1,3 м/с (углеродистая сталь, сплавы титана) либо 1,8 м/с (сплавы алюминия, высоколегированная сталь).

    Если вы приняли решение самостоятельно сделать плазменный резак, внимательным образом изучите приведенные выше рекомендации. Так вы сможете изготовить устройство, которое будет функционировать правильно, иметь продолжительный эксплуатационный период. Если у вас имеется инверторный аппарат, в обязательном порядке используйте его в качестве источника электроэнергии, а не сварочный трансформатор. Малые габаритные размеры прибора являются существенным плюсом.

    Самодельный плазморез схемы




    Как правило, плазмой листовой металл режется на крупных производствах, и делается это при изготовлении деталей сложной конфигурации. На промышленных станках режутся любые металлы: сталь, медь, латунь, алюминий, сверхтвердые сплавы. Примечательно, что плазменный резак вполне можно сделать собственноручно, хотя возможности устройства в этом случае будут несколько ограниченными. В крупносерийном производстве самодельный ручной плазморез непригоден, но вырезать им детали в своей мастерской, цехе или гараже удастся. В отношении конфигурации и твердости обрабатываемых заготовок ограничений практически нет. Однако они касаются скорости резания, размеров листа и толщины металла.

    Описание самодельного плазмореза из инвертора

    Плазморез своими руками легче смастерить, взяв за основу инверторный сварочный аппарат. Такой агрегат будет простым по конструкции, функциональным, с доступными основными узлами и деталями. Если какие-то детали не продаются, их тоже можно изготовить самостоятельно в мастерской с оборудованием средней сложности.

    Самодельный аппарат не оборудуется ЧПУ, в чем его недостаток и преимущество одновременно. Минус ручного управления в невозможности изготовления двух совершенно одинаковых деталей: мелкие серии деталей в чем-то будут отличаться. Плюс в том, что не придется покупать дорогостоящее ЧПУ. Для мобильного плазмореза ЧПУ не нужно, так как того не требуют выполняемые на нем задачи.

    Главные составные части самодельного агрегата:

    • плазмотрон;
    • осциллятор;
    • источник постоянного тока;
    • компрессор или баллон со сжатым газом;
    • кабели питания;
    • шланги подключения.

    Итак, сложных элементов в конструкции нет. Однако все элементы должны иметь определенные характеристики.

    Плазменная резка требует того, чтобы сила тока была, по крайней мере, как для сварочного аппарата средней мощности. Ток такой силы вырабатывается обыкновенным сварочным трансформатором и инверторным аппаратом. В первом случае конструкция получается условно мобильной: из-за большого веса и габаритов трансформатора ее перемещение затруднено. Вместе с баллоном сжатого газа или компрессором система получается громоздкой.

    Трансформаторы имеют невысокий КПД, из-за чего расход электроэнергии при резке металла получается повышенным.

    Схема с инвертором несколько проще и удобнее, а еще более выгодна в плане затрат энергии. Из сварочного инвертора выйдет довольно компактный резак, который разрежет металл толщиной до 30 мм. Промышленные установки режут металлические листы такой же толщины. Плазменный резак на трансформаторе способен разрезать даже более толстые заготовки, хотя подобное требуется не так часто.

    Плюсы плазменной резки видны как раз на тонких и сверхтонких листах.

    • Гладкость кромок.
    • Точность линии.
    • Отсутствие брызг металла.
    • Отсутствие перегретых зон около места взаимодействия дуги и металла.

    Самодельный резак собирается на базе инверторного сварочного аппарата любого типа. Неважно, какое количество рабочих режимов, нужен лишь постоянный ток силой больше 30 А.

    Плазмотрон

    Вторым по важности элементом является плазмотрон. Плазменный резак состоит из основного и добавочного электродов, первый сделан из тугоплавкого металла, а второй представляет собой сопло, обычно медное. Основной электрод служит катодом, а сопло – анодом, и во время работы это – обрабатываемая токопроводящая деталь.

    Если рассматривать плазмотрон прямого действия, дуга возникает между заготовкой и резаком. Плазмотроны косвенного действия режут плазменной струей. Аппарат из инвертора рассчитан на прямое действие.

    Электрод и сопло являются расходными материалами и заменяются по мере износа. Кроме них, в корпусе имеется изолятор, который разделяет катодный и анодный узлы, еще есть камера, где вихрится подаваемый газ. В сопле, коническом или полусферическом , сделано тонкое отверстие, через которое вырывается газ, раскаленный до 3000-5000°C .

    В камеру газ поступает из баллона или подается из компрессора по шлангу, который совмещен с кабелями питания, образующими пакет из шлангов и кабелей. Элементы соединены в изоляционном рукаве либо соединены жгутом. Газ идет в камеру через прямой патрубок, который находится сверху или сбоку вихревой камеры, обеспечивающей перемещение рабочей среды лишь в одну сторону.

    Принцип работы плазмотрона

    Газ, поступающий под давлением в пространство между соплом и электродом, проходит в рабочее отверстие, удаляясь после в атмосферу. С включением осциллятора – устройства, которое вырабатывает импульсный высокочастотный ток, – между электродами появляется предварительная дуга и нагревает газ в ограниченном пространстве камеры сгорания. Поскольку температура нагрева очень высокая, газ превращается в плазму. В этом агрегатном состоянии ионизированы, то есть электрически заряжены, практически все атомы. Давление в камере резко повышается, и газ вырывается наружу раскаленной струей.

    При поднесении к детали плазмотрона возникает вторая, более мощная, дуга. Если сила тока осциллятора – 30-60 А, рабочая дуга возникает при силе в 180-200 А. Она дополнительно разогревает газ, разгоняющийся под действием электричества до 1500 м/с. Комбинированное действие плазмы высокой температуры и скорости движения режет металл по тончайшей линии. Толщину разреза определяют свойства сопла.

    Плазмотрон косвенного действия работает иначе. Роль главного анода в нем играет сопло. Из резака вместо дуги вырывается струя плазмы, режущая не токопроводящие материалы. Самодельное оборудование данного типа работает крайне редко. В связи со сложностью устройства плазмотрона и тонких настроек сделать его в кустарных условиях практически невозможно, хотя чертежи найти нетрудно. Он работает под высокими температурами и давлениями и становится опасным, если что-то сделано неправильно!

    Осциллятор

    Если некогда заниматься сборкой электрических схем и поиском деталей, возьмите осцилляторы заводского изготовления, к примеру, ВСД-02. Характеристики этих устройств более всего подходят для работы с инвертором. Осциллятор подсоединяется в схему питания плазмотрона последовательно или параллельно, в зависимости от того, что диктует инструкция конкретного прибора.

    Рабочий газ

    Перед тем, как приступить к изготовлению плазмореза, продумайте сферу его применения. Если предстоит работа исключительно с черными металлами, обойтись можно одним лишь компрессором. Для меди, латуни и титана потребуется азот, а алюминий режется в смеси азота с водородом. Высоколегированные стали режут в аргоновой атмосфере, здесь аппарат рассчитывают и под сжатый газ.

    Транспортировка устройства

    Ввиду сложности конструкции устройства и многочисленности составляющих его компонентов, аппарат плазменной резки трудно разместить в ящике или переносном корпусе. Рекомендуется использовать складскую тележку для перемещения товаров. На тележке компактно расположится:

    • инвертор;
    • компрессор или баллоны;
    • кабельно-шланговая группа.

    В пределах мастерской или цеха с перемещением проблем не будет. Когда аппарат потребуется транспортировать на какой-либо объект, он загружается в прицеп легковой машины.

    Работу по раскрою металлических листов выполнить не так-то просто без специального оборудования. Поэтому все домашние мастера, который сталкиваются с подобной задачей, должны позаботиться о наличии в своем арсенале такого инструмента, как аппарат ручной плазменной резки. Это оборудование отличается компактными размерами и позволяет в домашних условиях легко разрезать железные листы на фрагменты подходящего размера.

    Этот инструмент обладает множеством достоинств, главным из которых является то, что во время разделения заготовок на отрезки владельцу не придется впоследствии заниматься обработкой краев деталей. Чтобы упростить работу с этим оборудованием, нелишним будет каждому домашнему умельцу получить представление о существующих разновидностях этих аппаратов, их конструкции, принципе работы и правилах выбора.

    Оборудование для плазменной резки металла

    Все многообразие подобных инструментов можно классифицировать на две основные группы:

    • производственного;
    • домашнего назначения.

    Особенностью аппаратов, представляющих первую группу, являются большие размеры и значительный вес. В их конструкции предусмотрено ЧПУ (числовое программное управление). Это приспособление упрощает изготовление деталей различных форм.

    Работа с таким оборудованием заключается в разработке макета с использованием специального программного обеспечения. Именно на него впоследствии придется ориентироваться во время выполнения работы. После этого созданный в требуемом формате файл поступает на машину , а там уже выполняется его отрезание. Стоит заметить, что подобное оборудование недешево: цена на эти агрегаты может достигать десятков тысяч долларов.

    Более простое устройство имеют аппараты, предназначенные для плазменной резки в домашних условиях. По своему исполнению они имеют вид компактного блока , который работает от электроэнергии и дополнен такими компонентами, как шланг и наконечник, обеспечивающие электрическую дугу. Именно благодаря ей и выполняется резка.

    Также дуга позволяет разделять железные листы и обеспечивать высокое качество краев. Учитывая, что для разрезания заготовки используется необычный инструмент в виде ножовки или диска, владельцу не придется тратить время и силы на дополнительную шлифовку деталей. Оборудование для домашнего использования привлекательно тем, что его можно перевозить в любое место, а также хранить и использовать на протяжении длительного времени.

    Предлагаемые на рынке модели устройств для плазменной резки рассчитаны на работу с различными видами материалов, что определяется типа газа, который имеется в механизме. При помощи воздушно-плазменного типа установок можно заниматься резкой заготовок из черных металлов и их сплавов . Если возникла задача по разделению деталей из цветных металлов и их комбинаций, желательно применять оборудование, где используются неактивные элементы наподобие водорода, азота или аргона. Однако к подобному варианту газовой резки в бытовых условиях прибегают нечасто.

    Отличие аппаратов прямого и косвенного действия

    Сегодня можно найти различные варианты ручных аппаратов, в которых реализован различный принцип функционирования. Работа установок прямого действия основывается на использовании электрической дуги. Последняя выглядит как цилиндр , и к ней непосредственно подведена струя газа. Благодаря подобной конструкции дуга нагревается до высоких температур порядка 20 000 градусов. И в то же время она способна эффективно охлаждать прочие элементы устройства.

    Если говорить об установках косвенного действия, то их особенностью является меньший КПД. Именно этим и обусловлено то, что к ним прибегают не так часто.

    Говоря про их устройство, следует отметить, что основная цель здесь заключается в размещении активных точек цепи на трубе либо специальном вольфрамовом электроде . Оборудование косвенного действия получило распространение для напыления, нагрева металлических устройств, причем в качестве режущего оборудования их не используют. В большинстве своем с помощью подобного ручного механизма выполняют ремонт автомобильных узлов, не прибегая к извлечению их из корпуса.

    При этом подобным установкам присуща одна общая особенность: они способны работать только при наличии воздушных фильтров и охладителей. Польза от первых заключается в увеличении срока службы катода и анода, ускорении запуска механизма, который эксплуатируется довольно долго.

    Что же касается второго элемента, то он необходим для увеличения эксплуатационного ресурса аппарата, работающего в непрерывном режиме. Оптимально, когда в течение часа беспрерывной резки этим аппаратом выделяют на отдых порядка 20 минут. Эти характеристики являются очень важными и должны учитываться вне зависимости от типа исполнения выбираемого устройства.

    Конструкция ручного плазмореза

    Возможность выполнять свою функцию подобному аппарату обеспечивает подача сильно нагретого воздуха на металлический лист. В условиях температуры, достигающей нескольких десятков тысяч градусов, при которой происходит нагрев кислорода , последний под большим давлением поступает на поверхность, что приводит к ее резке.

    Более быстрое выполнение этой операции обеспечивается с учетом ионизации электрическим током. Продлить срок службы подобного оборудования можно при условии, что в его оснащении будут присутствовать следующие элементы:

    • Плазмотрон . Имеет вид резака, в обязанности которого входит выполнение основных задач;
    • Плазморез . Это устройство может быть выполнено в варианте прямого или косвенного воздействия;
    • Сопло . Это приспособление превосходит по функциональности все прочие элементы оборудования. Оно дает понять, для выполнения резки какой сложности предназначена конкретная модель;
    • Электроды . Ими оснащаются отдельные виды устройств;
    • Компрессор . С его помощью создается мощный воздушный поток.

    Как сделать плазморез из инвертора - инструкция

    При желании подобное оборудование в состояние изготовить своими руками любой владелец. Однако, чтобы самодельный плазморез смог эффективно выполнять свою работу, необходимо соблюсти все правила. В подобном деле инвертор будет практически незамени м, так как при помощи этого устройства будет обеспечена надежная подача тока. За счет него в работе плазмореза не будет возникать перебоев, а также удастся уменьшить расход электроэнергии. Однако при этом у него имеются и недостатки: он рассчитан на резку материала меньшей толщины, нежели при использовании трансформатора.

    Выбор элементов

    Если вы решили самостоятельно изготовить плазморез, то вам следует подготовить необходимые материалы и оборудование:

    Сборка

    Еще до начала сборки самодельного плазмореза не помешает выяснить, совместимы ли компоненты, приобретенные вами между собой. Если вам ранее не приходилось изготавливать своими руками аппарат плазменной резки, то желательно обратиться за помощью к более опытным мастерам.

    Проведя анализ мощности каждого необходимого элемента, они дадут вам свою рекомендацию. Обязательно стоит позаботиться о наличии защитного комплекта одежды . Его вам придется использовать, когда настанет время проверить работоспособность самодельного плазмореза. Если говорить о процедуре сборки оборудования для плазменной резки, то она включает в себя следующие этапы:

    Вне зависимости от того, планируете ли вы изготавливать плазморез своими руками или же приобрести его в магазине, вначале следует изучить все модели, познакомиться с принципами их работы и вариантами исполнения. Важным моментом является и тип материала, который планируется в дальнейшем резать с помощью этого оборудования. Упростить себе задачу по выбору вы сможете, если вначале посмотрите видео, в котором показывается принцип действия аппарата ручной плазменной резки и технология работы с ним.

    Средняя стоимость оборудования

    Сегодня в магазинах представлено большое количество оборудования для ручной резки металлов, которые предлагаются по различным ценам. Причем на стоимость этих аппаратов будут оказывать влияние несколько факторов:

    Избежать ошибок на этапе выбора инструмента для резки металлов можно при условии, что вы посетите несколько магазинов и сравните условия, на которых вам готовы продать это оборудование. Рассматривая различные модели плазморезов , сразу следует поинтересоваться ценами на комплектующие, без которых не обойтись, если придется выполнять ремонт этого оборудования. В среднем цены запасные части к плазморезам с учетом толщины среза находятся в следующем диапазоне:

    • При толщине не более 30 мм – 150–300 тыс. руб.;
    • При толщине не более 25 мм – 81–220 тыс. руб.;
    • При толщине не более 17 мм – 45–270 тыс. руб.;
    • При толщине не более 12 мм – 32–230 тыс. руб.;
    • При толщине не более 10 мм – 25–20 тыс. руб.;
    • При толщине не более 6 мм – 15–200 тыс. руб.

    Заключение

    Оборудование для плазменной резки металлов является высокотехнологичным устройством, которое способно заметно упростить выполнение работы по разрезанию различных металлических изделий. Причем отнюдь не обязательно приобретать дорогое оборудование в магазине, каждый владелец может изготовить этот аппарат своими силами.

    Для этого достаточно подготовить все необходимое оборудование и в точности следовать технологии сборки плазмореза. Даже изготовленный своими руками плазморез способен обеспечить такое же качество резки стальных деталей, как и оборудование, предлагаемое в магазинах.

    Плазменные резаки активно используются в мастерских и предприятиях, связанных с цветными металлами. Большинство небольших предприятий применяют в работе плазменный резак, изготовленный своими руками.

    Хорошо себя показывает при разрезе цветных металлов, поскольку позволяет локально прогревать изделия и не деформировать их. Самостоятельное производство резаков обусловлено высокой стоимостью профессионального оборудования.

    В процессе изготовления подобного инструмента используются комплектующие от других электроприборов.

    Инвертор используется для выполнения работ как в домашних, так и в промышленных условиях. Существует несколько видов плазморезов для работы с различными типами металлов.

    Различают:

    1. Плазморезы, работающие в среде инертных газов, например, аргона, гелия или азота.
    2. Инструменты, работающие в среде окислителей, например, кислорода.
    3. Аппаратура, предназначенная для работы со смешанными атмосферами.
    4. Резаки, работающие в газожидкостных стабилизаторах.
    5. Устройства, работающие с водной или магнитной стабилизацией. Это самый редкий вид резаков, который практически невозможно найти в свободной продаже.

    Или плазматрон – это основная часть плазменной резки, отвечающая за непосредственную нарезку металла.

    Плазменный резак в разборе.

    Большинство инверторных плазменных резаков состоят из:

    • форсунки;
    • электрода;
    • защитного колпачка;
    • сопла;
    • шланга;
    • головки резака;
    • ручки;
    • роликового упора.

    Принцип действия простого полуавтоматического плазмореза состоит в следующем: рабочий газ вокруг плазмотрона прогревается до очень высоких температур, при которых происходит возникновение плазмы, проводящей электричество.

    Затем, ток, идущий через ионизированный газ, разрезает металл путем локального плавления. После этого струя плазмы снимает остатки расплавленного металла и получается аккуратный срез.

    По виду воздействия на металл различают такие виды плазматронов:

    1. Аппараты косвенного действия.
      Данный вид плазматронов не пропускает через себя ток и пригоден лишь в одном случае – для резки неметаллических изделий.
    2. Плазменная резка прямого действия.
      Применяется для разрезки металлов путем образования плазменной струи.

    Делаем плазменный резак своими руками

    Плазменная резка своими руками может быть изготовлена в домашних условиях. Неподъемная стоимость на профессиональное оборудование и ограниченное количество представленных на рынке моделей вынуждают умельцев собирать плазморез из сварочного инвертора своими руками.

    Самодельный плазморез можно выполнить при условии наличия всех необходимых компонентов.

    Перед тем как сделать плазморежущую установку, необходимо подготовить следующие комплектующие:

    1. Компрессор.
      Деталь необходима для подачи воздушного потока под давлением.
    2. Плазмотрон.
      Изделие используется при непосредственной резке металла.
    3. Электроды.
      Применяются для розжига дуги и создания плазмы.
    4. Изолятор.
      Предохраняет электроды от перегрева при выполнении плазменной резки металла.
    5. Сопло.
      Деталь, размер которой определяет возможности всего плазмореза, собранного своими руками из инвертора.
    6. Сварочный инвертор.
      Источник постоянного тока для установки. Может быть заменен сварочным трансформатором.

    Источник питания устройства может быть либо трансформаторным, либо инверторным.

    Схема работы плазменного резака.

    Трансформаторные источники постоянного тока характеризуются следующими недостатками:

    • высокое потребление электрической энергии;
    • большие габариты;
    • труднодоступность.

    К преимуществам такого источника питания можно отнести:

    • низкую чувствительность к перепадам напряжения;
    • большую мощность;
    • высокую надежность.

    Инверторы, в качестве блока питания плазмореза можно использовать, если необходимо:

    • сконструировать небольшой аппарат;
    • собрать качественный плазморез с высоким коэффициентом полезного действия и стабильной дугой.

    Благодаря доступности и легкости инверторного блока питания плазморезы на его основе могут быть сконструированы в домашних условиях. К недостаткам инвертора можно отнести лишь сравнительно малую мощность струи. Из-за этого толщина металлической заготовки, разрезаемой инверторным плазморезом, серьезно ограничена.

    Одной из главнейших частей плазмореза является ручной резак.

    Сборка данного элемента аппаратуры для резки металла осуществляется из таких компонентов:

    • рукоять с пропилами для прокладки проводов;
    • кнопка запуска горелки на основе газовой плазмы;
    • электроды;
    • система завихрения потоков;
    • наконечник, защищающий оператора от брызг расплавленного металла;
    • пружина для обеспечения необходимого расстояния между соплом и металлом;
    • насадки для снятия окалин и нагара.

    Резка металла различной толщины осуществляется путем смены сопел в плазмотроне. В большинстве конструкций плазмотрона, сопла закрепляются специальной гайкой, с диаметром, позволяющим пропустить конусный наконечник и зажать широкую часть элемента.

    После сопла располагаются электроды и изоляция. Для получения возможности усиления дуги при необходимости в конструкцию плазматрона включают завихритель воздушных потоков.

    Сделанные своими руками плазморезы на основе инверторного источника питания являются достаточно мобильными. Благодаря малым габаритам такую аппаратуру можно использовать даже в самых труднодоступных местах.

    Чертежи

    В глобальной сети интернет имеется множество различных чертежей плазменного резака. Проще всего изготовить плазморез в домашних условиях, используя инверторный источник постоянного тока.

    Электрическая схема плазмореза.

    Наиболее ходовой технический чертеж резака на основе плазменной дуги включает следующие компоненты:

    1. Электрод.
      На данный элемент подается напряжение от источника питания для осуществления ионизации окружающего газа. Как правило, в качестве электрода используются тугоплавкие металлы, образующие прочный окисел. В большинстве случаев конструкторы сварочных аппаратов используют гафний, цирконий или титан. Лучшим выбором материала электрода для домашнего использования является гафний.
    2. Сопло.
      Компонент автоматического плазменный сварочного аппарата формирует струю из ионизированного газа и пропускает воздух, охлаждающий электрод.
    3. Охладитель.
      Элемент используется для отвода тепла от сопла, поскольку при работе температура плазмы может достигать 30 000 градусов Цельсия.

    Большинство схем аппарата плазменной резки подразумевают такой алгоритм работы резака на основе струи ионизированного газа:

    1. Первое нажатие на кнопку пуск включает реле, подающее питание на блок управления аппаратом.
    2. Второе реле подает ток на инвертор и подключает электрический клапан продувки горелки.
    3. Мощный поток воздуха попадает в камеру горелки и очищает ее.
    4. Через определенный промежуток времени, задаваемый резисторами, срабатывает третье реле и подает питание на электроды установки.
    5. Запускается осциллятор, благодаря которому производится ионизация рабочего газа, находящегося между катодом и анодом. На данном этапе возникает дежурная дуга.
    6. При поднесении дуги к металлической детали зажигается дуга между плазмотроном и поверхностью, называющаяся рабочей.
    7. Отключение подачи тока для розжига дуги при помощи специального геркона.
    8. Проведение резальных или сварочных работ. В случае пропажи дуги, реле геркона вновь включает ток и разжигает дежурную струю плазмы.
    9. При завершении работ после отключения дуги, четвертое реле запускает компрессор, воздух которого охлаждает сопло и удаляет остатки сгоревшего металла.

    Наиболее удачными считаются схемы плазмореза модели АПР-91.

    Что нам понадобится?

    Чертеж плазменного резака.

    Для создания аппарата плазменной сварки необходимо обзавестись:

    • источником постоянного тока;
    • плазмотроном.

    В состав последнего входят:

    • сопло;
    • электроды;
    • изолятор;
    • компрессор мощностью 2-2.5 атмосферы.

    Большинство современных мастеров изготавливают плазменную сварку, подключаемую к инверторному блоку питания. Сконструированный при помощи данных компонентов плазмотрон для ручной воздушной резки работает следующим образом: нажатие на управляющую кнопку зажигает электрическую дугу между соплом и электродом.

    После завершения работы, после нажатия на кнопку выключения, компрессор подает струю воздуха и сбивает остатки металла с электродов.

    Сборка инвертора

    В случае, если фабричного инвертора нет в наличии, можно собрать самодельный.

    Инверторы для резаков на основе газовой плазмы, как правило, имеют в строении такие комплектующие:

    • блок питания;
    • драйвера силовых ключей;
    • силовой блок.

    Плазменная горелка в разрезе.

    Для плазморезов или сварочного оборудования не может обойтись без необходимых инструментов в виде:

    • набора отверток;
    • паяльника;
    • ножа;
    • ножовки по металлу;
    • крепежных элементов резьбового типа;
    • медных проводов;
    • текстолита;
    • слюды.

    Блок питания для плазменной резки собирается на базе ферритового сердечника и должен иметь четыре обмотки:

    • первичную, состоящую из 100 витков проволоки, толщиной 0.3 миллиметра;
    • первая вторичная из 15 витков кабеля с толщиной 1 миллиметр;
    • вторая вторичная из 15 витков проволоки 0.2 миллиметра;
    • третья вторичная из 20 витков 0.3 миллиметровой проволоки.

    Обратите внимание! Для минимизации негативных последствий от перепадов напряжения в электрической сети, намотку следует проводить по всей ширине деревянного основания.

    Силовой блок самодельного инвертора должен состоять из специального трансформатора. Для создания данного элемента следует подобрать два сердечника и намотать на них медную проволоку толщиной 0.25 миллиметров.

    Отдельного упоминания стоит система охлаждения, без которой инверторный блок питания плазмотрона может быстро выйти из строя.

    Чертеж технологии плазменной резки.

    При работе на аппарате для достижения наилучших результатов нужно соблюдать рекомендации:

    • регулярно проверять правильность направления струи газовой плазмы;
    • проверять правильность выбора аппаратуры в соответствии с толщиной металлического изделия;
    • следить за состоянием расходных деталей плазмотрона;
    • следить за соблюдением расстояния между плазменной струей и обрабатываемым изделием;
    • всегда проверять используемую скорость резки, чтобы избежать возникновения окалин;
    • время от времени диагностировать состояние системы подвода рабочего газа;
    • исключить вибрацию электрического плазмотрона;
    • поддерживать чистоту и аккуратность на рабочем месте.

    Заключение

    Аппаратура для плазменной резки – это незаменимый инструмент для аккуратной нарезки металлических изделий. Благодаря продуманной конструкции плазмотроны обеспечивают быстрый, ровный и качественный порез металлических листов без необходимости последующей обработки поверхностей.

    Большинство рукоделов из небольших мастерских предпочитают своими руками собирать мини резаки для работы с не толстым металлом. Как правило, самостоятельно сделанный плазморез по характеристикам и качеству работы не отличается от заводских моделей.