Первообразная и неопределенный интеграл свойства неопределенного интеграла. Первообразная и интегралы

ИКТИБ ИТА ЮФУ

КУРС ЛЕКЦИЙ ПО МАТЕМАТИКЕ

Глава 5 Интегральное исчисление
функции одной переменной

Лекция 21 Первообразная, неопределенный интеграл

План лекции

Первообразная и неопределенный интеграл. Свойства неопределенного интеграла. Табличное интегрирование. Свойство инвариантности формул интегрирования. Подведение под знак дифференциала. Замена переменной в неопределенном интеграле. Интегрирование по частям. Разложение многочленов на множители. Разложение правильных рациональных дробей на простейшие. Интегрирование простейших и рациональных дробей. Интегрирование тригонометрических функций и некоторых иррациональных выражений.

Понятие первообразной и неопределенного интеграла

Что такое интеграл? Правда ли, что интегрирование – это действие, обратное дифференцированию. Давайте ответим на эти и другие вопросы.

Определение 1 . Первообразной для функции называется функция , такая что .

Итак, первообразная – это функция, производная от которой равна заданной функции. Заметим, что первообразная для заданной функции не определяется однозначно. Например, производная от функции равна функции . Следовательно, функция является первообразной для функции . Но ведь производная от функции также равна функции . Следовательно, функция также является первообразной для функции , как и функция , где - произвольная постоянная.

Теорема 1 . (Общий вид первообразных для заданной функции) Пусть функция является первообразной для функции . Тогда любая первообразная функции представляется в виде , где - произвольная постоянная. И наоборот, при любом функция является первообразной для функции .

Доказательство . Вторая часть теоремы очевидна, т. к. очевидно, . Теперь достаточно доказать, что, если производные двух функций равны, то эти функции отличаются на константу. По сути, достаточно доказать, что если производная от функции (разности упомянутых функций) равна 0, то это производная от константы. Но это действительно так. Возьмем любые две точки. Разность значений функции в этих точках по формуле конечных приращений Лагранжа равна производной в некоторой промежуточной точке, умноженной на разность аргументов (). Но ведь производная везде равна 0, следовательно, и приращение функции всегда равно 0, т. е. функции равна константе. Теорема доказана.

Определение 2 . Совокупность всех первообразных для функции называется неопределенным интегралом от функции и обозначается символом .

Итак, действительно, вычислить неопределенный интеграл – это означает выполнение действия, обратного вычислению производной. Кроме того, с учетом теоремы 1, справедлива формула для вычисления неопределенного интеграла , (1) где - одна из первообразных для функции , которая называется поды нтегральной функцией.

Мы уже знаем, что производная функции имеет многочисленные приложения. Речь в приложениях, конечно идет о значении производных в отдельных точках, т. е. о числах. Обратите внимание, что неопределенный интеграл – это совокупность функций. Поэтому непосредственное применение неопределенного интеграла весьма ограничено. В приложениях встречаются другие виды интегралов, где результатом является число, а технически вычисление сводится к нахождению первообразной функции. Поэтому очень важно научиться вычислять неопределенный интеграл.

1. От каких функций можно вычислить
неопределенный интеграл

Мы знаем, что можно вычислить производную любой элементарной функции, используя таблицу производных основных элементарных функций и правила вычисления производных (производная суммы, разности, произведения, частного, сложной функции).

Отсюда можно написать таблицу первообразных, прочитав таблицу производных «справа налево». Можно также сформулировать правила, соответствующие правилам вычисления производной. С суммой, разностью, вынесением числового множества правила дифференцирования и интегрирования идентичны. А вот с произведением, частным и вычислением производной сложной функции ситуация сложнее. Ведь производная, скажем, произведения не равна «произведению производных». Поэтому таблица первообразных и правила вычисления первообразных не позволяют найти первообразную любой элементарной функции. Существуют, так называемые, «не берущиеся» интегралы от элементарных функций. Например, казалось бы, простой интеграл нельзя в нашем понимании вычислить, т. к. среди элементарных функций нет функции, производная от которой равна . Первообразная для непрерывной функции существует всегда, но в данном случае она не среди элементарных. Такие функции называются специальными. Многие из них нужны в приложениях, и их изучают особо.

Итак, в отличии от вычисления производной функции, от нас не требуется умение вычислить неопределенный интеграл от любой элементарной функции. Мы изучим определенные типы элементарных функций, от которых должны научиться вычислять неопределенные интегралы.

Таблица простейших неопределенных интегралов

Давайте вспомним таблицу производных основных элементарных функций:

1) 2) 3) 4)
5) 6) 7) 8)
9) 10) 11) 12)

Во многом она порождает таблицу простейших неопределенных интегралов. Здесь есть и другие интегралы. Все они легко могут быть проверены вычислением производной от правых частей.

1) 2) 3)
4) 5) 6)
7) 8) 9)
10) 11) 12)
13) 14) 15)
| следующая лекция ==>
|

Функция F(x ) называется первообразной для функции f(x ) на заданном промежутке, если для всех x из этого промежутка выполняется равенство

F"(x ) = f (x ) .

Например, функция F(x) = х 2 f(x ) = 2х , так как

F"(x) = (х 2 )" = 2x = f(x).

Основное свойство первообразной

Если F(x) — первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С — произвольная постоянная.

Например.

Функция F(x) = х 2 + 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 + 1 )" = 2 x = f(x) ;

функция F(x) = х 2 - 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 1)" = 2x = f(x) ;

функция F(x) = х 2 - 3 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 3)" = 2 x = f(x) ;

любая функция F(x) = х 2 + С , где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x ) = 2х .

Правила вычисления первообразных

  1. Если F(x) — первообразная для f(x) , а G(x) — первообразная для g(x) , то F(x) + G(x) — первообразная для f(x) + g(x) . Иными словами, первообразная суммы равна сумме первообразных .
  2. Если F(x) — первообразная для f(x) , и k — постоянная, то k ·F(x) — первообразная для k ·f(x) . Иными словами, постоянный множитель можно выносить за знак производной .
  3. Если F(x) — первообразная для f(x) , и k , b — постоянные, причём k ≠ 0 , то 1 / k · F(k x + b ) — первообразная для f (k x + b ) .

Неопределённый интеграл

Неопределённым интегралом от функции f(x) называется выражение F(x) + С , то есть совокупность всех первообразных данной функции f(x) . Обозначается неопределённый интеграл так:

f(x) dx = F(x) + С ,

f(x) — называют подынтегральной функцией ;

f(x) dx — называют подынтегральным выражением ;

x — называют переменной интегрирования ;

F(x) — одна из первообразных функции f(x) ;

С — произвольная постоянная.

Например, 2 x dx = х 2 + С , cos x dx = sin х + С и так далее.

Слово "интеграл" происходит от латинского слова integer , что означает "восстановленный". Считая неопределённый интеграл от 2 x , мы как бы восстанавливаем функцию х 2 , производная которой равна 2 x . Восстановление функции по её производной, или, что то же, отыскание неопределённого интеграла по данной подынтегральной функции, называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Основные свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции:
  2. ( f(x) dx )" = f(x) .

  3. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла:
  4. k · f(x) dx = k · f(x) dx .

  5. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:
  6. ( f(x) ± g(x ) ) dx = f(x) dx ± g(x ) dx .

  7. Если k , b — постоянные, причём k ≠ 0 , то
  8. f (k x + b ) dx = 1 / k · F(k x + b ) + С .

Таблица первообразных и неопределённых интегралов


f(x)
F(x) + C
f(x) dx = F(x) + С
I.
$$0$$
$$C$$
$$\int 0dx=C$$
II.
$$k$$
$$kx+C$$
$$\int kdx=kx+C$$
III.
$$x^n~(n\neq-1)$$
$$\frac{x^{n+1}}{n+1}+C$$
$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$
IV.
$$\frac{1}{x}$$
$$\ln |x|+C$$
$$\int\frac{dx}{x}=\ln |x|+C$$
V.
$$\sin x$$
$$-\cos x+C$$
$$\int\sin x~dx=-\cos x+C$$
VI.
$$\cos x$$
$$\sin x+C$$
$$\int\cos x~dx=\sin x+C$$
VII.
$$\frac{1}{\cos^2x}$$
$$\textrm{tg} ~x+C$$
$$\int\frac{dx}{\cos^2x}=\textrm{tg} ~x+C$$
VIII.
$$\frac{1}{\sin^2x}$$
$$-\textrm{ctg} ~x+C$$
$$\int\frac{dx}{\sin^2x}=-\textrm{ctg} ~x+C$$
IX.
$$e^x$$
$$e^x+C$$
$$\int e^xdx=e^x+C$$
X.
$$a^x$$
$$\frac{a^x}{\ln a}+C$$
$$\int a^xdx=\frac{a^x}{\ln a}+C$$
XI.
$$\frac{1}{\sqrt{1-x^2}}$$
$$\arcsin x +C$$
$$\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x +C$$
XII.
$$\frac{1}{\sqrt{a^2-x^2}}$$
$$\arcsin \frac{x}{a}+C$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C$$
XIII.
$$\frac{1}{1+x^2}$$
$$\textrm{arctg} ~x+C$$
$$\int \frac{dx}{1+x^2}=\textrm{arctg} ~x+C$$
XIV.
$$\frac{1}{a^2+x^2}$$
$$\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
$$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
XV.
$$\frac{1}{\sqrt{a^2+x^2}}$$
$$\ln|x+\sqrt{a^2+x^2}|+C$$
$$\int\frac{dx}{\sqrt{a^2+x^2}}=\ln|x+\sqrt{a^2+x^2}|+C$$
XVI.
$$\frac{1}{x^2-a^2}~(a\neq0)$$
$$\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
$$\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
XVII.
$$\textrm{tg} ~x$$
$$-\ln |\cos x|+C$$
$$\int \textrm{tg} ~x ~dx=-\ln |\cos x|+C$$
XVIII.
$$\textrm{ctg} ~x$$
$$\ln |\sin x|+C$$
$$\int \textrm{ctg} ~x ~dx=\ln |\sin x|+C$$
XIX.
$$ \frac{1}{\sin x} $$
$$\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
$$\int \frac{dx}{\sin x}=\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
XX.
$$ \frac{1}{\cos x} $$
$$\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
$$\int \frac{dx}{\cos x}=\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
Первообразные и неопределённые интегралы, приведённые в этой таблице, принято называть табличными первообразными и табличными интегралами .

Определённый интеграл

Пусть на промежутке [a ; b ] задана непрерывная функция y = f(x) , тогда определённым интегралом от a до b функции f(x) называется приращение первообразной F(x) этой функции, то есть

$$\int_{a}^{b}f(x)dx=F(x)|{_a^b} = ~~F(a)-F(b).$$

Числа a и b называются соответственно нижним и верхним пределами интегрирования.

Основные правила вычисления определённого интеграла

1. \(\int_{a}^{a}f(x)dx=0\);

2. \(\int_{a}^{b}f(x)dx=- \int_{b}^{a}f(x)dx\);

3. \(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx,\) где k — постоянная;

4. \(\int_{a}^{b}(f(x) ± g(x))dx=\int_{a}^{b}f(x) dx±\int_{a}^{b}g(x) dx \);

5. \(\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx\);

6. \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\), где f(x) — четная функция;

7. \(\int_{-a}^{a}f(x)dx=0\), где f(x) — нечетная функция.

Замечание . Во всех случаях предполагается, что подынтегральные функции интегрируемые на числовых промежутках, границами которых являются пределы интегрирования.

Геометрический и физический смысл определённого интеграла

Геометрический смысл
определённого интеграла


Физический смысл
определённого интеграла



Площадь S криволинейной трапеции (фигура, ограниченная графиком непрерывной положительной на промежутке [a ; b ] функции f(x) , осью Ox и прямыми x=a , x=b ) вычисляется по формуле

$$S=\int_{a}^{b}f(x)dx.$$

Путь s , который преодолела материальная точка, двигаясь прямолинейно со скоростью, изменяющейся по закону v(t) , за промежуток времени a ; b ] , то площадь фигуры, ограниченной графиками этих функций и прямыми x = a , x = b , вычисляется по формуле

$$S=\int_{a}^{b}(f(x)-g(x))dx.$$


Например. Вычислим площадь фигуры, ограниченной линиями

y = x 2 и y = 2 - x .


Изобразим схематически графики данных функций и выделим другим цветом фигуру, площадь которой необходимо найти. Для нахождения пределов интегрирования решим уравнение:

x 2 = 2 - x ; x 2 + x - 2 = 0 ; x 1 = -2, x 2 = 1 .

$$S=\int_{-2}^{1}((2-x)-x^2)dx=$$

$$=\int_{-2}^{1}(2-x-x^2)dx=\left (2x-\frac{x^2}{2}-\frac{x^3}{2} \right)\bigm|{_{-2}^{~1}}=4\frac{1}{2}. $$

Объём тела вращения


Если тело получено в результате вращения около оси Ox криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на промежутке [a ; b ] функции y = f(x) и прямыми x = a и x = b , то его называют телом вращения .

Объём тела вращения вычисляется по формуле

$$V=\pi\int_{a}^{b}f^2(x)dx.$$

Если тело вращения получено в результате вращения фигуры, ограниченной сверху и снизу графиками функций y = f(x) и y = g(x) , соответственно, то

$$V=\pi\int_{a}^{b}(f^2(x)-g^2(x))dx.$$


Например. Вычислим объём конуса с радиусом r и высотой h .

Расположим конус в прямоугольной системе координат так, чтобы его ось совпадала с осью Ox , а центр основания располагался в начале координат. Вращение образующей AB определяет конус. Так как уравнение AB

$$\frac{x}{h}+\frac{y}{r}=1,$$

$$y=r-\frac{rx}{h}$$

и для объёма конуса имеем

$$V=\pi\int_{0}^{h}(r-\frac{rx}{h})^2dx=\pi r^2\int_{0}^{h}(1-\frac{x}{h})^2dx=-\pi r^2h\cdot \frac{(1-\frac{x}{h})^3}{3}|{_0^h}=-\pi r^2h\left (0-\frac{1}{3} \right)=\frac{\pi r^2h}{3}.$$


Определение первообразной.

Первообразной функции f(x) на промежутке (a; b) называется такая функция F(x) , что выполняется равенство для любого х из заданного промежутка.

Если принять во внимание тот факт, что производная от константы С равна нулю, то справедливо равенство . Таким образом, функция f(x) имеет множество первообразных F(x)+C , для произвольной константы С , причем эти первообразные отличаются друг от друга на произвольную постоянную величину.


Определение неопределенного интеграла.

Все множество первообразных функции f(x) называется неопределенным интегралом этой функции и обозначается .

Выражение называют подынтегральным выражением , а f(x) – подынтегральной функцией . Подынтегральное выражение представляет собой дифференциал функции f(x) .

Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x) , а множество ее первообразных F(x)+C .

На основании свойств производной можно сформулировать и доказать свойства неопределенного интеграла (свойства первообразной).

Промежуточные равенства первого и второго свойств неопределенного интеграла приведены для пояснения.

Для доказательства третьего и четвертого свойств достаточно найти производные от правых частей равенств:

Эти производные равны подынтегральным функциям, что и является доказательством в силу первого свойства. Оно же используется в последних переходах.


Таким образом, задача интегрирования является обратной задаче дифференцирования, причем между этими задачами очень тесная связь:

  • первое свойство позволяет проводить проверку интегрирования. Чтобы проверить правильность выполненного интегрирования достаточно вычислить производную полученного результата. Если полученная в результате дифференцирования функция окажется равной подынтегральной функции, то это будет означать, что интегрирование проведено верно;
  • второе свойство неопределенного интеграла позволяет по известному дифференциалу функции найти ее первообразную. На этом свойстве основано непосредственное вычисление неопределенных интегралов.

Рассмотрим пример.

Пример.

Найти первообразную функции , значение которой равно единице при х = 1 .

Решение.

Мы знаем из дифференциального исчисления, что (достаточно заглянуть в таблицу производных основных элементарных функций). Таким образом, . По второму свойству . То есть, имеем множество первообразных . При х = 1 получим значение . По условию, это значение должно быть равно единице, следовательно, С = 1 . Искомая первообразная примет вид .

Пример.

Найти неопределенный интеграл и результат проверить дифференцированием.

Решение.

По формуле синуса двойного угла из тригонометрии , поэтому

Из таблицы производных для тригонометрических функций имеем

То есть,

По третьему свойству неопределенного интеграла можем записать

Обращаясь ко второму свойству, получим .

Следовательно,

Проверка.

Для проверки результата продифференцируем полученное выражение:

В итоге получили подынтегральную функцию, значит, интегрирование выполнено правильно. В последнем переходе была использована формула синуса двойного угла.

Если таблицу производных основных элементарных функций переписать в виде дифференциалов, то из нее по второму свойству неопределенного интеграла можно составить таблицу первообразных.

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Мы начинаем изучать интегралы, которые широко используются во многих областях техники. Изучение начнем с неопределенного интеграла.

Первообразная и неопределенный интеграл

Основной задачей дифференциального исчисления является дифференцирование данных функций, другими словами, задача нахождения скорости изменения данной функции. Многочисленные вопросы науки и техники приводят к постановке обратной задачи: по заданной функции f (x) восстановить такую функцию F(x), для которой f (x) была бы производной: F ¢ (x) = f (x).

Определение . Функция F(x) называется первообразной для f (x), если

F ¢ (x) = f (x) или dF(x) = f (x) dx.

Примеры . 1) f (x) = 3x 2 , F(x) = x 3 ;

2) f (x) = cosx, F(x) = sinx.

Легко видеть, что данной функции f (x) = 3x 2 соответствует не одна первообразная, а множество: х 3 ; х 3 + 1; х 3 - 1; х 3 + 5; х 3 - 100; х 3 + С.

Действительно, (х 3)¢ = 3x 2 ; (x 3 + 1)¢ = 3x 2 ; (x 3 - 1) ¢ = 3x 2 ; . . . . (x 3 + С)¢ = 3x 2 .

Вообще, если F(x) - первообразная данной функции f (x), то первообразной функцией будет и функция F(x) + c, "СÎR, т.к.:

¢ = F¢(x) = f (x).

Исчерпывается ли множество всех первообразных f (x) выражениями вида F(x) + C или же есть первообразные этой функции, не получившиеся из F(x) + C ни при каком значении C? Оказывается, верно утверждение: никаких других первообразных функции f (x) нет. Иными словами, если F 1 (x) и F 2 (x) - две первообразные для f (x), то F 1 (x) = F 2 (x) + С,

где С – некоторая постоянная.

Действительно, т.к. F 1 (x) и F 2 (x) - первообразные для f (x), то

Рассмотрим разность при всех х.

Пусть х 0 - какое-нибудь фиксированное значение аргумента,

х - произвольное другое значение.

По формуле Лагранжа

где - некоторое число между х 0 и х. Так как:

У всякой ли функции f (x) имеется первообразная?

Теорема. Если функция f (x) непрерывна на каком-нибудь промежутке, то она имеет на нем первообразную (без доказательства).

Определение. Если F (x) - какая-то первообразная для f (x), то выражение F (x) + С, где С - произвольная постоянная, называется неопределенным интегралом и обозначается: , при этом f (x) называется подынтегральной функцией, а выражение f (x) dx - подынтегральным выражением:

Действие нахождения неопределенного интеграла, иначе, нахождение всех первообразных от данной функции, называется интегрированием этой функции. Очевидно, что операции дифференцирования и интегрирования взаимно обратны.

Сложение и вычитание, возведение в степень и извлечение корня, умножение и деление дают примеры взаимообратных математических операций.