Однофазный асинхронный двигатель с пусковой обмоткой. Как определить рабочую и пусковую обмотки

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД — конденсаторный двигатель
  • 25 — мощность 25 (Вт)
  • У4 — климатическое исполнение

Вот его внешний вид.



Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) - провода красного цвета
  • пусковая (В1-В2) — провода синего цвета


В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя .

1. Сечение проводов

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.


Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.


Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).


Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).


Делаем вывод: первая обмотка — пусковая, вторая — рабочая.


Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).




По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

  • (U1-U2) — рабочая
  • (Z1-Z2) — пусковая

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

  • (С1-С2) — рабочая
  • (В1-В2) — пусковая

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.



Одеваю бирки на провода. Вот что получилось.



Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно!!! Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так!!!

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.


В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.




Вот, что у меня получилось:

  • (1-2) — 301 (Ом)
  • (1-3) — 431 (Ом)
  • (2-3) — 129 (Ом)


Отсюда делаем следующий вывод:

  • (1-2) — пусковая обмотка
  • (2-3) — рабочая обмотка
  • (1-3) — пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его

Как определить рабочую и пусковую обмотки однофазного электродвигателя

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Меня часто спрашивают о том, как можно отличить рабочую обмотку от пусковой в однофазных двигателях, когда на проводах отсутствует маркировка.

Каждый раз приходится подробно разъяснять, что и как. И вот сегодня я решил написать об этом целую статью.

В качестве примера возьму однофазный электродвигатель КД-25-У4, 220 (В), 1350 (об/мин.):

  • КД - конденсаторный двигатель
  • 25 - мощность 25 (Вт)
  • У4 - климатическое исполнение

Вот его внешний вид.



Как видите, маркировка (цветовая и цифровая) на проводах отсутствует. На бирке двигателя можно увидеть, какую маркировку должны иметь провода:

  • рабочая (С1-С2) - провода красного цвета
  • пусковая (В1-В2) - провода синего цвета


В первую очередь я Вам покажу, как определить рабочую и пусковую обмотки однофазного двигателя, а затем соберу схему его включения. Но об этом будет следующая статья. Перед тем как приступить к чтению данной статьи рекомендую Вам прочитать: подключение однофазного конденсаторного двигателя.

Визуально смотрим сечение проводников. Пара проводов, у которых сечение больше, относятся к рабочей обмотке. И наоборот. Провода, у которых сечение меньше, относятся к пусковой.

Зная основы электротехники. можно с уверенностью сказать: чем больше сечение проводов, тем меньше их сопротивление, и наоборот, чем меньше сечение проводов, тем больше их сопротивление.

В моем примере разница в сечении проводов не видна, т.к. они тонкие и на глаз их отличить не возможно.


2 . Измерение омического сопротивления обмоток

Даже если разницу в сечении проводов видно не вооруженным глазом, то я Вам все равно рекомендую измерять величину сопротивления обмоток. Таким образом, мы заодно и проверим их целостность.

Для этого воспользуемся цифровым мультиметром М890D. Сейчас я не буду рассказывать Вам о том, как пользоваться мультиметром, об этом читайте здесь:

Снимаем изоляцию с проводов.


Затем берем щупы мультиметра и производим замер сопротивления между двух любых проводов.


Если на дисплее нет показаний, то значит нужно взять другой провод и снова произвести замер. Теперь измеренное значение сопротивления составляет 300 (Ом).


Это мы нашли выводы одной обмотки. Теперь подключаем щупы мультиметра на оставшуюся пару проводов и измеряем вторую обмотку. Получилось 129 (Ом).


Делаем вывод: первая обмотка - пусковая, вторая - рабочая.


Чтобы в дальнейшем не запутаться в проводах при подключении двигателя, подготовим бирочки («кембрики») для маркировки. Обычно, в качестве бирок я использую, либо изоляционную трубку ПВХ, либо силиконовую трубку (Silicone Rubber) необходимого мне диаметра. В этом примере я применил силиконовую трубку диаметром 3 (мм).




По новым ГОСТам обмотки однофазного двигателя обозначаются следующим образом:

У двигателя КД-25-У4, взятого в пример, цифровая маркировка выполнена еще по-старому:

Чтобы не было несоответствий маркировки проводов и схемы, изображенной на бирке двигателя, маркировку я оставил старую.



Одеваю бирки на провода. Вот что получилось.



Для справки: Многие ошибаются, когда говорят, что вращение двигателя можно изменить путем перестановки сетевой вилки (смены полюсов питающего напряжения). Это не правильно. Чтобы изменить направление вращения, нужно поменять местами концы пусковой или рабочей обмоток. Только так.

Мы рассмотрели случай, когда в клеммник однофазного двигателя выведено 4 провода. А бывает и так, что в клеммник выведено всего 3 провода.


В этом случае рабочая и пусковая обмотки соединяются не в клеммнике электродвигателя, а внутри его корпуса.

Как быть в таком случае?

Все делаем аналогично. Производим замер сопротивления между каждыми проводами. Мысленно обозначим их, как 1, 2 и 3.




Вот, что у меня получилось:


Отсюда делаем следующий вывод:

  • (1-2) - пусковая обмотка
  • (2-3) - рабочая обмотка
  • (1-3) - пусковая и рабочая обмотки соединены последовательно (301 + 129 = 431 Ом)

Для справки: при таком соединении обмоток реверс однофазного двигателя тоже возможен. Если очень хочется, то можно вскрыть корпус двигателя, найти место соединения пусковой и рабочей обмоток, разъединить это соединение и вывести в клеммник уже 4 провода, как в первом случае. Но если у Вас однофазный двигатель является конденсаторным, как в моем случае с КД-25, то его реверс можно осуществить путем переключения фазы питающего напряжения.

P.S. На этом все. Если есть вопросы по материалу статьи, то задавайте их в комментариях. Спасибо за внимание.

Добрый вечер, Дмитрий! Я сам работаю электриком в ЭТЛ. У меня вопрос по поводу испытаний кабельной линии из сшитого полиетилена. Вы сталкивались с этим, какое подавали напряжение, какие были токи утечки, сколько по времени проходит испытание одной фазы? Заранее спасибо. если можно отправьте свой ответ мне на
почту.

Артем, здравствуйте. Об испытании кабелей из сшитого полиэтилена я писал в комментариях в этой статье.

здравствуйте Дмитрий. а не могли бы вы подробно написать статью о масляных выключателях, (соленоид, контактор включения, катушку отключения, его испытания, замеры характеристик) и также испытания силовых трансформатор и его замеры. очень нужно, есть нюансы в голове.

SLV, я планировал написать эти статьи, особенно про разные типы приводов (ПЭ-11, ПС-10, ПЭ-21 и др.), про высоковольтные масляные и вакуумные выключатели, установленные, как в камерах КСО, так и на каретках, но боюсь, что многим посетителям сайта это будет не интересно. Вот постоянно и откладываю…

Здравствуйте, Дмитрий!
Вы все очень замечательно объясняете, огромное спасибо! Не могли бы Вы прояснить, что означает в автоматических выключателях, к примеру 6кА или 35кА, если они рассчитаны на один ток срабатывания? И почему у них такая разница в цене?

Борис, значения 4,5 (кА), 6 (кА), 10 (кА) и т.д. означают электродинамическую стойкость аппарата защиты при коротком замыкании в сети, т.е. показывают насколько автомат устойчив к короткому замыканию. Для дома (квартиры) вполне хватит 4,5 (кА), т.к. линии от ТП до жилого дома и от ВРУ до квартир достаточно длинные, они обладают большим активным сопротивлением, что приводит к снижению токов короткого замыкания до значений 0,5-1,5 (кА), а чаще и того меньше.

я весь интернет перерыл, нифига не могу разобрать, книги на работе читал, не могу понять и все.кстати немогли бы вы сказать что все таки значит тангенс диэлектрических потерь масла, вот все про него говорят на работе а никто и толком точно незнает.)

И ещё одно.Раньше многие подключали 3-х фазные двигатели к однофазной цепи, но время ушло.Многие сейчас покупают готовые однофазные.У меня была таблица соотношения мощности двигателя к мощности конденсаторов.А тут один знакомый попросил подключить в гараже движок трехфазник.Таблицу я не нашел,пришлось подбирать.
Так вот, нет ли у вас такой таблицы.Они были в старых учебниках по электротехнике.Если есть, прошу опубликовать или отправить на мой E-mail.
C уважением, Николай.

Николай, читайте здесь. Там есть расчет емкости рабочего и пускового конденсаторов в зависимости от мощности двигателя.

Добрый день! Подскажите пожалуйста по проблемке. Однофазный двигатель с конденсаторным стартом. Время от времени двигатель не пускается-гудит. Батарея конденсаторов собрана из трёх МБГП-2 конденсаторов по 2мкФ 630В. Кондёры на тестере показывают полную ёмкость. Чем грозит увеличение ёмкости конденсаторов? и чем грозит уменьшение вольтажа их же с 630В до 450В?Спасибо! сопротивление обмоток 50 Ом пусковая 20 Ом рабочая марку двигателя сейчас не помню.

Вадим, если двигатель гудит, то значит отсутствует вращающий момент. Это может произойти по следующим причинам: либо вышли из строя конденсаторы (отсутствие или малая емкость), либо возникает межвитковое в одной из обмоток двигателя. Лучше начать с простого и заменить старые конденсаторы на новые. Емкость увеличивать не нужно, ну если только совсем немного в ту или иную сторону, а вот вместо 630 (В) можно смело использовать 450 (В).

Добрый день. Конденсаторы показывают номинальную ёмкость. найти другие у нас оказалось проблемой. либо большая либо меньшая ёмкость, либо габарит не подходящий. либо ценник не реальный и сроки поставки. как я понял если я увеличу с шести до почти семи мкФ то особых проблем не будет?двигатель по условию работает по секунд пятнадцать.проблема с пуском носит не систематический характер. как вычислить межвитковое? на трёх фазных асинхронных знаю, прибор есть.спасибо.

Здравствуйте,знатоки.Что,если непредсказуемо меняется направление вращения двигателя.Но,если я использую обмотку с меньшим сечением как рабочую,то тогда все отлично работает,и при перемене контактов,правильно меняет направление вращения,и работает около часа без перегрева.Движок обычный старый СССР.Одна обмотка 14 Ом, вторая 56 Ом.

Доброго времени суток,сегодня взялся запустить вытяжку бытовую над плитой, блок управления скоростью двигателя уже давно приказал долго жить….со светом нет проблем, а вот с эл.двигателя идут четыре провода, как же с ними быть. кого куда подключать? Пвсевдосенсорные кнопки выдернул, поставил фиксируемые, вытяжка KRONA GALA с тремя скоростями вращения вентилятора….Помогите с подключением.

А как вы определили что пусковая обмотка должна иметь большее сопротивление чем рабочая? исходя из чего? обьясните пожалуйста

Здравствуйте,у меня двигатель 2ДАК71-40-1.0-у2 имеется четыре провода(черный,красный,серый,белый)все они прозваниваются между собой,подскажите пожалуйста как подкючить?

http://zametkielectrika.ru

Однофазный асинхронный двигатель - маломощный механизм до 10 кВт. Однако благодаря своей компактности и особенностями действия, его использование очень большое.

Сфера применения: бытовые приборы с однофазным током. Однофазные асинхронные электродвигатели применяются для холодильников, центрифуг, стиральных машин. Часто используется для маломощных вентиляторов.

Приборы с одной фазой используются и в промышленности, но не так часто, как многофазные агрегаты.

  • Типы однофазных моторов
  • Принцип работы

Устройство и схема подключения АД

Интересно! Трехфазный асинхронный двигатель можно использовать для работы в однофазном режиме. Предварительно необходимо провести расчет.

У статора две электрообмотки. Одна из них рабочая, которая является основной. Вторая пусковая и нужна, чтобы осуществлять пуск устройства. Отличие однофазовых моторов - отсутствие момента впуска. Ротор напоминает беличью клетку по структуре.Ток одной фазы производит магнитное поле. Оно состоит из двух полей. Включая устройство, ротор двигателя неподвижен.


Расчет результирующего момента при неподвижном роторе лежит в основе магнитных полей образующих два вращающихся момента.

Противоположные моменты обозначаются М.

n – частота вращения


Если неподвижную часть задействовать, тогда наступит вращающий момент. Из-за его недоступности при запуске, двигатели оборудованы дополнительным пусковым устройством.

Отличие однофазных асинхронных двигателей от трёхфазных - особенности статора. Пазы имеютдвухфазовую обмотку. Одна будет основной или рабочей, а вторая именуется пусковой.

Магнитные оси находятся по отношению друг к другу на 90 градусов. Включенная рабочая фаза не вызывает вращение ротора по причине неподвижной оси магнитного поля.

Существуют специальные программы для расчета обмоток статора.

Типы однофазных моторов

Различают бифилярный и конденсаторный механизм.

  1. Бифилярный пуск

Бифилярная обмотка не используется при постоянном режиме. Иначе значение КПД снижается. Набирая обороты, она обрывается. Обмотка пуска включается на несколько секунд. Расчет работы по 3 секунды до 30 раз в 60 минут. Превышение запусков могут привести к перегреву витков.

  1. Конденсаторный пуск

Фаза расщепленная, цепь вспомогательной обмотки включается во время запуска. Для достижения пускового момента необходимо создать круговое магнитное поле. Использование конденсатора обеспечивает лучший пусковой момент. Двигатели с включенными конденсаторами в цепи являются конденсаторными. Работают на основе вращения поля магнитов. У конденсаторного устройства две катушки, которые всегда под напряжением.

Принцип работы

В основе принципа действия находится короткозамкнутый ротор. Магнитное поле представлено в виде двух кругов с противоположными последовательностями, то есть поля вращаются в разные стороны, но с одинаковой скоростью.Если ротор предварительно разогнать в нужную сторону, то он продолжит вращение в ту же сторону.


Поэтому запускают однофазный АД, нажав кнопку пуска. При этом вызывается возбуждение в статоре. Токи активируют магнитное поле вращаться, а в воздушном зазоре возникает магнитная индукция. За несколько секунд разгон ротора равняется номинальной скорости.

Отпуская кнопку впуска, двигатель переходит с режима двух фаз на одну фазу. Однофазовый режим поддерживается составляющей переменного поля магнитов, которая вращается быстрее ротора из-за скольжения.

Для улучшения работы однофазного АД встраивается центробежный выключатель и реле с размыкающими контактами.

Центробежный выключатель прерывает пуск статорной обмотки на автомате, если скорость ротора номинальная. А тепловое реле отключает двухфазную обмотку от сети при их перегреве.

Изменение направления роторного вращения получается при перемене направления тока в любой из фаз обмотки при запуске. Достигается это нажатием пусковой кнопки и перестановки двух или одной металлических пластин.

Чтобы образовался фазовый сдвиг необходимо добавить в цепь резистор, дроссель иди конденсатор. Все они являются фазозаменяющими элементами.

Во время запуска двигателя работает две фазы, а далее одна.

Преимущества:

  • большая двигательная способность благодаря неимению коллектора;
  • небольшой размер и масса;
  • недорогая стоимость в сравнении с многофазными;
  • питание от синусоидальной сети;
  • простая конструкция из-за короткозамкнутого ротора.

Недостатки:

  • отсутствие или малый пусковой момент, а также низкий коэффициент полезного действия;
  • узкий диапазон регулировки частоты вращения.

Совет! Чтобы приобрести качественный однофазный мотор, выбирайте надежного производителя. Например, АИРЕ, Siemens, Emod. Проверяйте наличие документов.

Стоимость однофазного асинхронного двигателя зависит от его мощности. Средняя цена варьирует от 2,5 тысячи рублей до 9 тысяч.Приобрести однофазовые асинхронные двигатели можно в магазинах или в интернете.

При правильном расчете и принципе действия, однофазный асинхронный двигатель будет служить долго и эффективно.

26. СХЕМЫ ОБМОТОК ОДНОФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ

В однофазных двигателях с пусковой обмоткой главная обмотка обычно занимает 2 / 3 , а вспомогательная - 1 / 3 общего числа пазов статора. В этих двигателях число пазов на полюс для каждой фазы определяется по формулам:

где q A - число пазов на полюс главной фазы; q В - число пазов на полюс вспомогательной фазы; z A = 2 / 3 - число пазов, занимаемых главной фазой; z B = 1 / 3 - число пазов, занимаемых вспомогательной фазой; z - общее число пазов; - число полюсов.

В однофазных конденсаторных двигателях пазы статора обычно делят поровну между обеими фазами, т. е. z A =z B , и число пазов на полюс определяется по формуле

Шаг по пазам для однофазных обмоток определяется так же, как и для трехфазных. Двухслойные обмотки выполняются с укорочением обычно на 1 / 3 полюсного деления с равными шагами для главной и вспомогательной обмоток. Шаг двухслойной обмотки

Соединение катушечных групп и образование параллельных ветвей в однофазных обмотках производится по тем же правилам, что и для трехфазных обмоток.

При построении схем двигателей с повышенным сопротивлением пусковой фазы надо учитывать наличие в ней бифилярной обмотки.

Для удобства ремонта пусковую обмотку обычно располагают поверх главной (ближе к клину).

Примерный порядок составления схемы однофазной обмотки двигателя с пусковым элементом. Последовательность составления схемы однослойной обмотки разберем на примере

2р = 4, z = 24.

Сначала находят число пазов, занимаемых главной фазой,

Число пазов на полюс главной фазы

Число пазов на полюс вспомогательной фазы в два раза меньше, чем главной, т. е.

Далее на чертеже надо представить последовательность чередования пазов главной и вспомогательной фаз (рис. 60, а) и проставить направление тока в главной фазе, исходя из правил: под соседними полюсами направление тока меняется на противоположное (рис. 60, б ). Чтобы на схеме не оказалась разрезанной катушка главной фазы при выполнении наиболее распространенного типа обмотки вразвалку, первую катушечную группу разбивают на две половины (пазы 1,2 и 23,24).

В соответствии с проставленным направлением тока соединяют пазовые части катушек, в результате этого образуются катушечные группы или полугруппы. При этом возможны различные варианты. При диаметральном шаге

одинаковом для всех катушек, получается простая шаблонная обмотка (рис. 60, в ), число катушечных групп которой равно числу пар полюсов р. Но такая обмотка почти не применяется ввиду больших размеров лобовых частей. Если разделить каждую катушечную группу на две полугруппы, получим шаблонную обмотку вразвалку (рис. 60, г) с меньшим шагом и меньшей длиной витка. Однако из-за большой компактности лобовых частей чаще применяется концентрическая обмотка вразвалку (рис. 60,5). При больших значениях q A используется также концентрическая обмотка, у которой катушечная группа подразделяется на три полугруппы (см. рис. 68). По виду лобовых частей эта обмотка напоминает трехплоскостную трехфазную концентрическую.

Начало фазы может быть в принципе выбрано из любого паза, исходя из удобства выполнения обмотки. Начиная обход всех пазов из первого паза и следя за направлением тока, соединяем катушечные группы (полугруппы) между собой (рис. 60, е) и няходим ко-



Рис. 60. Построение схемы однослойной обмотки однофазного двигателя с пусковым элементом: а - последовательность чередования пазов главной и вспомогательной фаз. б - направление тока в пазовых частях катушек главной фазы, в - простая шаблонная обмотка, г - шаблонная обмотка вразвалку, д - концентрическая обмотка вразвалку, е - схема главной и вспомогательной фаз концентрической обмотки вразвалку

нец фазы, обойдя все пазы рабочей обмотки. Соединение полугрупп производится по правилу: конец полугруппы соединяется с концом соседней полугруппы той же фазы, начало - с началом, т. е. так же, как и в трехфазной однослойной обмотке вразвалку, где катушечная группа разделена на две полугруппы.

Рис. 61. Однослойные обмотки вразвалку однофазных двигателей при 2р=2, z=12: а - шаблонная, б - концентрическая



Рис. 62. Однослойная (шаблонная вразвалку) обмотка однофазного двигателя при 2р=4, z=36

Схему вспомогательной фазы выполняют по тем же правилам, только она имеет обычно меньшее число катушек в группе (полугруппе). Шаг ее может быть таким же, как у главной фазы или иным.

Типичные схемы однослойных обмоток двигателей с пусковыми элементами приведены на рис. 61,62.

Схему двухслойной обмотки двигателя с пусковым элементом можно составить в такой последовательности. Сначала определяют шаг

обмотки, число пазов на полюс для главной и вспомогательной фаз q A и q B . В соответствии с шагом обмотки и числом катушек в группе, равным q A , вычерчивается первая катушечная группа главной фазы (рис. 63,64), рядом с ней катушечная группа вспомогательной фазы, затем опять катушечная группа главной фазы и т. д. Шаги по пазам для обеих фаз берутся одинаковыми. Проставляется направление тока в верхних сторонах катушек главной фазы (под соседними полюсами меняется на противоположное, как и в одно-

Рис. 63. Двухслойная обмотка однофазного двигателя при 2р=2, z=18, q A = 6, q B = 3, y A =y B =6(1-7)



Рис. 64. Двухслойная обмотка однофазного двигателя при 2р=4, z=24, q A =4, q B =2, у А =у B =4(1-5)

слойной обмотке). Последовательное соединение катушечных групп в фазе также выполняется по правилу: конец с концом, начало с началом, при этом не будет нарушена полярность полюсов. Соединения во вспомогательной фазе производятся аналогичным образом.

Примерный порядок составления схемы однофазной однослойной обмотки двигателя с повышенным сопротивлением вспомогательной фазы. Схема главной фазы у двигателя с повышенным сопротивле-

Рис. 65. Выполнение катушки с бифилярной обмоткой: а - катушка, разделенная на две секции, б - катушка с бифилярной обмоткой, в - обозначение катушки с бифилярной обмоткой на схеме; 1 - основная секция, 2 - бифилярная секция, H и K - начало и конец катушки

нием вспомогательной фазы такая же, как и у двигателей с пусковыми элементами.

При составлении схемы вспомогательной фазы надо учитывать, что в каждой катушке часть ее витков намотана встречно. Это уменьшает число эффективных проводников в пазу. Встречно намотанные витки нейтрализуют действие такого же количества витков, намотанных в основном направлении, образуя бифилярную обмотку, поэтому для нахождения числа эффективных витков в катушке (эффективных проводников в пазу) надо из общего числа вычесть удвоенное число встречно намотанных витков. Если, например, в пазу лежит катушка, в которой всего 81 виток, из них встречно намотаны 22, то число эффективных проводников в пазу будет: 81-2x22=37.

Для определения числа встречно намотанных витков при известных общем числе проводников в пазу и числе эффективных проводников в пазу надо произвести обратное действие, т. е. из общего числа вычесть число эффективных проводников и полученный результат разделить на два. При общем числе проводников 81 и числе эффективных - 37 число встречно намотанных витков должно быть:

Катушку с бифилярной обмоткой можно получить, если уложить в одни и те же пазы две секции катушки, одна из которых поворачивается на 180° вокруг параллельной пазам оси. Правая и левая стороны повернутой секции при этом меняются местами (рис. 65). В пазах, где расположена катушка с бифилярной обмоткой, ток

Рис. 66. Однослойная концентрическая вразвалку обмотка при 2р=4, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной обмотки: а - катушка с бифилярной обмоткой изображена в виде двух секций, б - то же, в виде целой катушки



Рис. 67. Однослойная концентрическая вразвалку обмотка при 2р=2, z=18 однофазного двигателя с повышенным сопротивлением вспомогательной фазы: а - при намотке против часовой стрелки, б - при намотке по часовой стрелке

Рис. 68. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы

Рис. 69. Однослойная концентрическая с разбивкой катушечной группы на три части обмотка при 2р=2, z=24 однофазного двигателя с повышенным сопротивлением вспомогательной фазы и соединением главной фазы в две параллельные ветви

проходит по одной секции в едином направлении, по другой - в противоположном. Полярность полюсов определяется направлением тока в катушке с большим числом витков, поэтому секцию с большим числом витков условно называют основной, а с меньшим - бифилярной.

На рис. 66,а представлена схема с бифилярной обмоткой во вспомогательной фазе, бифилярная секция условно показана внутри основной. Обычно катушки с бифилярной обмоткой на схемах изоб-

Рис. 70. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=18

ражаются в виде целой катушки с петлей, в которой изменяется направление тока (рис. 65, в и рис. 66, б).

Катушки и катушечные группы с бифилярной обмоткой должны быть соединены таким образом, чтобы полярность под соседними полюсами вспомогательной фазы чередовалась; полярность же полюсов определяется направлением тока в основных секциях.

Типичные схемы обмоток двигателей с повышенным сопротивлением вспомогательной фазы приведены на рис. 67-69.

Всякая обмотка может быть намотана либо по часовой стрелке, либо против нее, если смотреть на статор со стороны схемы. Это определяется навыками обмотчика и принятой технологией изготовления. Пример схемы при двух различных направлениях намотки приведен на рис. 67.

Примерный порядок составления схемы обмотки конденсаторного двигателя. Схемы однофазных конденсаторных двигателей строятся так же, как и схемы однофазных с пусковыми элементами, только при этом надо учитывать, что числа пазов на полюс главной и вспомогательной фаз одинаковы и поэтому схемы обеих фаз также получаются одинаковыми.

Типичные схемы однофазных конденсаторных двигателей приведены на рис. 70-76.

Рис. 71. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24

Рис. 72. Однослойная концентрическая обмотка вразвалку однофазного конденсаторного двигателя при 2р=2, z=24 и соединения каждой из фаз в две параллельные ветви

Рис. 73. Однослойная концентрическая обмотка с «расчесанными» катушками однофазного конденсаторного двигателя при 2р=4, z=24



Рис. 74. Двухслойная обмотка однофазного конденсаторного двигателя при 2р=4, z=24, q А =q B =3, y A =y B =5(1-6)

В ряде случаев для конденсаторных двигателей характерна наличие в обеих фазах «расчесанных» катушек с половинным числом витков. На схеме рис. 73 показаны четыре такие катушки.

Обмотка, представленная на рис. 75, 76, из-за дробного числа пазов на полюс имеет признаки шаблонной вразвалку и двухслойной обмоток и поэтому названа комбинированной.

Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.



Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая - вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.


На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.




Следует помнить, что использование однофазного электродвигателя - это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.

Основные типы однофазных индукционных электродвигателей

Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.


Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.


В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.




Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.


Выделяют четыре основных типа электродвигателей:


Индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),


Индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),


Индукционный двигатель с реостатным пуском (RSIR) и


Двигатель с постоянным разделением емкости (PSC).


На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.





Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)

Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.


Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.






Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.


Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.



Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)

Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.




Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.


Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.


Электродвигатели CSCR - самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.



Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)

Данный тип двигателей ещё известен как "электродвигатели с расщеплённой фазой". Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.


Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление - выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.






Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.


Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.



Однофазный электродвигатель с постоянным разделение емкости (PSC)

Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.






Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов - обычно меньше 200% от номинального тока нагрузки, - что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.


Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).


Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.



Двухпроводные однофазные электродвигатели

Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.



Ограничения однофазных электродвигателей

В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.


Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.





О напряжении в однофазных электродвигателях

Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.




Изменение напряжения питания


Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:




Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения - например 200 В.



Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ - например, пусковой момент будет ниже.


Заключение


Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).


Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.