Схеми саморобних hi-fi підсилювачів. Транзисторний підсилювач класу своїми руками

Сьогодні у нас корисна саморобка для поціновувачів гарного звуку: високоякісний ламповий підсилювач зроблений своїми руками

Вітаю!

Вирішив я зібрати двотактний ламповий підсилювач (дуже дуже сверблять) з накопичених у мене за довгий довгий час деталей: корпус, лампи, панельки до них, трансформатори та інше.

Треба сказати, що все це добро мені дісталося задарма (безоплатно тобіш) і вартість мого нового проекту буде 0.00 гривень, а якщо щось треба буде докупити по дрібниці, куплю вже за рублі (оскільки почав я свій проект в Україні, а закінчу вже у Росії).

Почну опис із корпусу.

Колись це був, зважаючи на все, непоганий підсилювач фірми SANYO модель DCA 411.

Але послухати мені його не довелося так як дістався він мені в моторошному брудному і неробочому вигляді, перекопаний до не можна і горілий сітовик на 110 В (японець, напевно) закоптив всі нутрощі. Замість рідних мікросхем кінцевого каскаду якісь соплі із радянських транзисторів (це фото з інтернету гарного екземпляра). Коротше, я все це випатрав, і почав думати. Так ось, нічого кращого, ніж запихати туди ламповик, я не придумав (уже досить багато місця там).

Рішення прийнято. Тепер треба визначатися зі схемою та деталями. У мене є достатня кількість ламп 6п3с та 6н9с.



Зважаючи на те, що однотактник я вже збирав на 6п3с, мені захотілося більше потужності і, порившись у просторах інтернету, я вибрав цю схему двотактного підсилювача на 6п3с.

Схема саморобного лампового підсилювача (УНЧ)

Схема взята із сайту heavil.ru

Треба сказати, що схема, напевно, не найкраща, але через її відносну простоту і доступність деталей вирішив зупинитися на ній. Вихідний трансформатор (фігура важлива у сюжеті).

Як вихідні трансформатори вирішено використовувати «легендарний» ТС-180. Відразу камінням не кидайтеся (прибережіть їх до кінця статті:)) я і сам у глибоких сумнівах про таке рішення, але з огляду на моє прагнення не витрачати жодної копійки на цей проект продовжу.

Висновки трансу для мого випадку я об'єднав ось так.

(8)—(7)(6)—(5)(2)—(1)(1′)—(2′)(5′)—(6′)(7′)—(8′) первинка

(10)—(9)(9′)—(10′) вторинка

на з'єднання висновків 1 і 1 подається анодна напруга, 8 і 8 на аноди ламп.

10 та 10′ на динамік. (Це я не сам вигадав, знайшов в інтернеті). Щоб розвіяти туман песимізму, я вирішив перевірити частотну характеристику трансформатора на око. Для цього зібрав такий стенд нашвидкуруч.

На фото генератор ГЗ-102, підсилювач BEAG APT-100 (100V-100W), Осцилограф С1-65, еквівалент навантаження 4 Ом (100W), та й сам трансформатор. До речі, на сайті є .

Ставлю 1000 гц розмахом 80 (приблизно) вольт і фіксую напругу на екрані осцилографа (близько 2). Далі збільшую частоту і чекаю коли напруга на вторинному трансі почне падати. Теж саме роблю у бік зменшення частоти.

Результат мене, треба сказати, порадував АЧХ практично лінійною в діапазоні від 30 гц до 16 кГц, ну я думав, що буде набагато гірше. До речі, підсилювач BEAG APT-100 має трансформатор, що підвищує, на виході і його АЧХ, можливо, теж не ідеальна.

Тепер можна збирати все до купи у корпус зі спокійною совістю. Є задум зробити монтаж і компонування всередині в кращих традиціях, так званого, моддингу (мінімум проводів на увазі) і ще не погано було б зробити підсвічування світлодіодами як у промислових екземплярах.

Блок живлення саморобного підсилювача.

Складання почну з заразом опишу його. Серцем блоку живлення (та й усього підсилювача, напевно) буде тороїдальний трансформатор ТСТ-143, який свого часу (року 4 тому) видер з м'ясом з якогось лампового генератора прямо в той час, як його несли на звалище. Більше на жаль нічого не встиг L шкода такий генератор, а може він ще й робітник був чи полагодити можна було… Гаразд щось я відволікся. Ось він мій силовик.

Звичайно, в інтернеті знайшов схему на нього.

Випрямляч буде на діодному мосту із фільтром на дроселі для анодного живлення. І 12 вольт для живлення підсвічування та анодної напруги. Дросель ось такий у мене.

Його індуктивність склала 5 генрі (якщо вірити приладу), що цілком достатньо для хорошої фільтрації. А діодний міст знайшовся ось такий.

Його назва BR1010. (10 ампер 1000 вольт). Все починаю випилювати підсилювач. Думаю, буде якось так.

Помічаю та вирізаю отвори у текстоліті під панельки для лампочок.





Виходить непогано :) поки що мені все подобається.

І так, і так. свердлимо пиляємо:)

Почалося щось вимальовуватись.

Знайшов у старих запасах фторопластовий дріт і відразу всі альтернативи і компроміси з приводу проводу для монтажу зникли без сліду:) .



Такий ось вийшов монтаж. Все хіба що «кошерно» напруження перевиті, земля в одній, практично, точці. Має працювати.

Настав час городити харчування. Після перевірки та продзвонювання всіх вихідних обмоток трансу припаяв усі необхідні дроти до нього, і почав встановлювати згідно з прийнятим планом.

Як відомо, у нашому нелегкому нікуди без підручних матеріалів: так став у нагоді контейнер від кіндер-сюрпризу.

І кришка від нескафе та старий компакт диск




Я видер із плат телевізорів і моніторів. Усі ємності не менше 400 вольт (знаю, що треба було б побільше, але не хочу купувати).

Міст шунтую ємностями (які були під рукою, напевно, поміняю потім)

Замало виходить, ну та гаразд, під навантаженням просяде :)

Вимикач живлення використовую штатний від підсилювача (чіткий та м'який).

Із цим готово. Добре вийшло:)

Підсвічування для корпусу підсилювача лампи.

Для реалізації підсвічування було куплено світлодіодну стрічку.

І встановлена ​​таким чином корпус.


Тепер свічення підсилювача буде видно і вдень. Для живлення підсвічування я зроблю окремий випрямляч зі стабілізатором на якійсь КРКЕН подібній мікросхемі (що знайду в мотлоху), від якого планую запитати схему затримки подачі анодної напруги.

Реле затримки.

Порившись у засіках батьківщини, я знайшов ось таку зовсім недоторкану штуку.

Це радіо-конструктор реле часу для фотозбільшувача.


Збираємо, перевіряємо, приміряємо.


Час спрацьовування виставив близько 40 секунд, а змінний резистор замінив на постійний. Справа йде до завершення. Залишилось усе зібрати разом, поставити морду, індикатори та регулятори.

Регулятори (змінники на вході)

Кажуть, що від них може сильно залежати якість звуку. Коротше я поставив такі

Здвоєні по 100 ком. так як у мене їх два, то я вирішив запаралелити висновки, отримавши тим самим 50 кОм і підвищену стійкість до хрипів:)

Індикатори

Індикатори я задіяв штатні, зі штатним підсвічуванням

Схема підключення була мною нещадно викушена з рідної плати і задіяна.

Ось що зрештою у мене вийшло.




При перевірці потужності підсилювач продемонстрував напругу на виході 10 вольт неспотвореної синусоїди частотою 1000гц на навантаження 4 ома (25 ват) однаково каналами, що порадувало:)

При прослуховуванні звук був кристально чистим без фону та пилу, що називається, але надто моніторним, чи що? красивим, але пласким.

Я наївно вважав, що він без тембрів заграє, але…

При використанні програмного еквалайзера вдалося отримати дуже гарне звучання, яке сподобалося всім. Дякую всім велике!!!

На Хабре вже були публікації про DIY-лампові підсилювачі, які було дуже цікаво читати. Безперечно, звук у них чудовий, але для повсякденного використання простіше використовувати пристрій на транзисторах. Транзистори зручніші, оскільки не вимагають прогріву перед роботою і довговічнішими. Та й не кожен ризикне починати лампову сагу з анодними потенціалами під 400 В, а трансформатори під транзисторні пару десятків вольт набагато безпечніші і доступніші.

Як схему для відтворення я вибрав схему від John Linsley Hood 1969, взявши авторські параметри в розрахунку на імпеданс своїх колонок 8 Ом.

Класична схема від британського інженера, опублікована майже 50 років тому, досі є однією з найвідтворюваніших і збирає про себе виключно позитивні відгуки. Цьому є безліч пояснень:
- Мінімальна кількість елементів спрощує монтаж. Також вважається, що чим простіше конструкція, тим краще звук;
- незважаючи на те, що вихідних транзисторів два, їх не треба перебирати у комплементарні пари;
- вихідних 10 Ватт із запасом вистачає для звичайного людського житла, а вхідна чутливість 0.5-1 Вольт дуже добре узгоджується з виходом більшості звукових карт чи програвачів;
– клас А – він і в Африці клас А, якщо ми говоримо про гарне звучання. Про порівняння з іншими класами буде трохи нижче.



Внутрішній дизайн

Підсилювач починається з живлення. Поділ двох каналів для стерео найправильніше вести вже з двох різних трансформаторів, але я обмежився одним трансформатором із двома вторинними обмотками. Після цих обмоток кожен канал існує сам собою, тому треба не забувати множити на два все згадане знизу. На макетці робимо мости на діодах Шоттки для випрямляча.

Можна і на звичайних діодах або навіть готових мостах, але тоді їх необхідно шунтувати конденсаторами та й падіння напруги на них більше. Після мостів йдуть CRC-фільтри із двох конденсаторів по 33000 мкф і між ними резистор 0.75 Ом. Якщо взяти менше і ємність, і резистор, то CRC-фільтр стане дешевшим і менше грітися, але збільшаться пульсації, що не комільфо. Дані параметри імхо є розумними з точки зору ціна-ефект. Резистор у фільтр потрібен потужний цементний, при струмі спокою до 2А він розсіюватиме 3 Вт тепла, тому краще взяти із запасом на 5-10 Вт. Іншим резисторам у схемі потужності 2 Вт буде цілком достатньо.

Далі переходимо до самої плати підсилювача. В інтернет-магазинах продається купа готових китів, проте не менше скарг на якість китайських компонентів або безграмотних розводок на платах. Тому краще самому, під свій же «розсип». Я зробив обидва канали на єдиній макетці, щоб потім прикріпити її до дна корпусу. Запуск із тестовими елементами:

Все, окрім вихідних транзисторів Tr1/Tr2, знаходиться на самій платі. Вихідні транзистори монтуються на радіаторах, про це трохи нижче. До авторської схеми з оригінальної статті слід зробити такі ремарки:

Не все потрібно відразу впаювати намертво. Резистори R1, R2 і R6 краще спочатку поставити підстроювальні, після всіх регулювань випаяти, виміряти їх опір і припаяти остаточні постійні резистори з аналогічним опором. Налаштування зводиться до наступних операцій. Спочатку за допомогою R6 виставляється, щоб напруга між X і нулем була рівно половиною від напруги +V і нулем. В одному з каналів мені не вистачило 100 ком, так що краще брати ці підрядники із запасом. Потім за допомогою R1 і R2 (зберігаючи їх зразкове співвідношення!) Виставляється струм спокою - ставимо тестер на вимірювання постійного струму і вимірюємо цей струм у точці входу плюсу живлення. Мені довелося відчутно зменшити опір обох резисторів для отримання потрібного струму спокою. Струм спокою підсилювача в класі А максимальний і по суті, без вхідного сигналу, весь йде в теплову енергію. Для 8-омних колонок цей струм, за рекомендацією автора, має бути 1.2 А при напрузі 27 Вольт, що означає 32.4 Ват тепла на кожен канал. Оскільки виставлення струму може зайняти кілька хвилин, то вихідні транзистори повинні бути вже на радіаторах, що охолоджують, інакше вони швидко перегріються і помруть. Бо гріються здебільшого вони.

Не виключено, що в порядку експерименту захочеться порівняти звучання різних транзисторів, тому для них можна залишити можливість зручної заміни. Я спробував на вході 2N3906, КТ361 та BC557C, була невелика різниця на користь останнього. У передвихідних пробувалися КТ630, BD139 та КТ801, зупинився на імпортних. Хоча всі перераховані вище транзистори дуже хороші, і різниця може бути швидше суб'єктивною. На виході я поставив одразу 2N3055 (ST Microelectronics), оскільки вони подобаються багатьом.

При регулюванні та заниженні опору підсилювача може зрости частота зрізу НЧ, тому для конденсатора на вході краще використовувати не 0.5 мкф, а 1 або навіть 2 мкф полімерної плівці. По Мережі ще гуляє російська картинка-схема «Ультралінійний підсилювач класу А», де цей конденсатор взагалі запропонований як 0.1 мкф, що може призвести до зрізу всіх басів під 90 Гц:

Пишуть, що ця схема не схильна до самозбудження, але про всяк випадок між точкою Х і землею ставиться ланцюг Цобеля: R 10 Ом + З 0.1 мкф.
- запобіжники, їх можна і потрібно ставити як на трансформатор, так і силовий вхід схеми.
- дуже доречним буде використання термопасти для максимального контакту між транзистором та радіатором.

Слюсарно-столярне

Тепер про традиційно найскладнішу частину в DIY - корпусі. Габарити корпусу задаються радіаторами, а вони в класі А повинні бути більшими, пам'ятаємо про 30 Ватт тепла з кожного боку. Спочатку я недоучив цю потужність і зробив корпус із середніми радіаторами 800см² на канал. Однак при виставленому струмі спокою 1.2А вони нагрілися до 100 ° С вже за 5 хвилин, і стало ясно, що потрібно щось потужніше. Тобто потрібно або ставити більше радіатори, або використовувати кулери. Робити квадрокоптер мені не хотілося, тому були куплені гігантські красені HS 135-250 площею 2500 см на кожний транзистор. Як показала практика, такий захід виявився трохи надлишковим, зате тепер підсилювач спокійно можна чіпати руками – температура дорівнює лише 40°С навіть у режимі спокою. Деякою проблемою стало свердління отворів у радіаторах під кріплення та транзистори – спочатку куплені китайські свердла по металу свердлили вкрай повільно, на кожну дірку йшло б не менше півгодини. На допомогу прийшли кобальтові свердла з кутом заточування 135 ° від відомого німецького виробника - кожен отвір проходить за кілька секунд!

Сам корпус я зробив із оргскла. Замовляємо у склярів одразу нарізані прямокутники, виконуємо в них необхідні отвори для кріплень та фарбуємо зі зворотного боку чорною фарбою.

Пофарбоване на звороті оргскло виглядає дуже красиво. Тепер залишається тільки все зібрати і насолоджуватися музи ... ах так, при остаточному збиранні ще важливо для мінімізації фону правильно розвести землю. Як було з'ясовано за десятиліття до нас, C3 необхідно приєднувати до сигнальної землі, тобто. до мінусу входу-входу, а решту мінуса можна відправити на «зірку» біля конденсаторів фільтра. Якщо все зроблено правильно, то ніякого фону не почути, навіть якщо на максимальній гучності піднести вухо до колонки. Ще одна «земляна» особливість, яка характерна для звукових карт, які не розв'язані з комп'ютером гальванічно – це перешкоди з душі, які можуть пролізти через USB та RCA. Судячи з інтернету, проблема трапляється часто: у колонках можна почути звуки роботи HDD, принтера, мишки та фон БП системника. У такому разі найпростіше розірвати земляну петлю, заклеївши ізолентою заземлення на вилці підсилювача. Побоюватися тут нічого, т.к. залишиться другий контур заземлення через комп'ютер.

Регулятор гучності на підсилювачі я не став робити, оскільки дістати якийсь якісний ALPS не вдалося, а шарудіння китайських потенціометрів мені не сподобалося. Замість нього було встановлено звичайний резистор 47 ком між «землею» і «сигналом» входу. Тим більше, регулятор у зовнішньої звукової карти завжди під рукою, та й у кожній програмі теж є повзунок. Регулятора гучності немає тільки вінілового програвача, тому для його прослуховування я приробив зовнішній потенціометр до сполучного кабелю.

Я вгадаю цей контейнер за 5 секунд.

Зрештою, можна приступати до прослуховування. Як джерело звуку використовується Foobar2000 → ASIO → зовнішня Asus Xonar U7. Колонки Microlab Pro3 Головна перевага цих колонок - це окремий блок власного підсилювача на мікросхемі LM4766, який можна відразу забрати кудись подалі. Набагато цікавіше з цією акустикою звучали посилки від міні-системи Panasonic з гордим написом Hi-Fi або підсилювач радянського програвача Вега-109. Обидва вищезгадані апарати працюють у класі АВ. Представлений у статті JLH переграв усіх перелічених вище товаришів в одну хвіртку, за результатами сліпого тесту для 3 осіб. Хоча різницю було чути неозброєним вухом і без жодних тестів – звук явно детальніший і прозоріший. Дуже легко, наприклад, почути різницю між MP3 256kbps та FLAC. Раніше я думав, що ефект lossless більше, ніж плацебо, але тепер думка змінилася. Аналогічно набагато приємніше стало слухати нескомпресовані від loudness war файли - dynamic range менше 5 Дб взагалі не айс. Лінслі-Худ коштує витрат часу та грошей, бо аналогічний брендовий усилок коштуватиме набагато дорожче.

Матеріальні витрати

Трансформатор 2200р.
Вихідні транзистори (6 шт. із запасом) 900р.
Конденсатори фільтра (4 шт) 2700 грн.
«Розсип» (резистори, дрібні конденсатори та транзистори, діоди) ~ 2000 р.
Радіатори 1800р.
Оргскло 650р.
Фарба 250р.
Роз'єми 600 р.
Плати, дроти, срібний припій та ін. ~1000 р.
РАЗОМ ~12100 р.

Підсилювач, незважаючи на відносну простоту, забезпечує досить високі параметри. Взагалі-то, правду кажучи, "мікросхемні" підсилювачі мають низку обмежень, тому підсилювачі на "розсипусі" можуть забезпечити більш високі показники. На захист мікросхеми (інакше чому я і сам її використовую, і іншим рекомендую?) можна сказати:

Схема дуже проста
і дуже дешева
і практично не потребує налагодження
і зібрати її можна за один вечір
а якість перевершує багато підсилювачів 70-х... 80-х років, і цілком достатньо більшості застосувань (та й сучасні системи до 300 доларів можуть їй поступитися)
таким чином, підсилювач підійде і початківцю, і досвідченому радіоаматору (мені, наприклад, якось знадобився багатоканальний підсилювач перевірити одну ідейку. Вгадайте, як я вчинив?).

У будь-якому випадку, погано зроблений і неправильно налаштований підсилювач на "розсипусі" звучатиме гірше за мікросхемний. А наше завдання – зробити дуже гарний підсилювач. Потрібно відзначити, що звучання підсилювача дуже хороше (якщо його правильно зробити та правильно живити), є інформація, що якась фірма випускала Hi-End підсилювачі на мікросхемі TDA7294! І наш підсилювач анітрохи не гірший!

Схема цього підсилювача - це повторення схеми включення, запропонованої виробником. І це невипадково - хто краще знає, як її включати. І, напевно, не буде жодних несподіванок через нестандартне включення або режим роботи.

Вхідний ланцюжок R1C1 є фільтром нижніх частот (ФНЧ), що обрізає все вище 90 кГц. Без нього не можна - ХХI століття - це насамперед століття високочастотних перешкод. Частота зрізу цього фільтра є досить високою. Але це спеціально - адже я не знаю, до чого підключатиметься цей підсилювач. Якщо на вході стоятиме регулятор гучності, то саме - його опір додасться до R1, і частота зрізу знизиться (оптимальне значення опору регулятора гучності ~10 кОм, більше - краще, але порушиться закон регулювання).

Далі ланцюжок R2C2 виконує прямо протилежну функцію – не пропускає на вхід частоти нижче 7 Гц. Якщо вам це дуже низько, ємність С2 можна зменшити. Якщо сильно захопитися зниженням ємності, можна залишитись зовсім без низьких. Для повного звукового діапазону С2 має бути щонайменше 0,33 мкф. І пам'ятайте, що у конденсаторів розкид ємностей досить великий, тому якщо написано 0,47 мкф, то може виявитися, що там 0,3! І ще. На нижній межі діапазону вихідна потужність знижується в 2 рази, тому її краще вибирати нижче:

С2 [мкФ] = 1000 / (6,28 * Fmin [Гц] * R2 [кОм])

Резистор R2 задає вхідний опір підсилювача. Його величина дещо більша, ніж за даташитом, але це й краще - надто низький вхідний опір може "не сподобатися" джерелу сигналу. Врахуйте, що якщо перед підсилювачем увімкнено регулятор гучності, то його опір має бути в 4 рази менше, ніж R2, інакше зміниться закон регулювання гучності (величина гучності від кута повороту регулятора). Оптимальне значення R2 лежить в діапазоні 33...68 кОм (більший опір знизить стійкість до перешкод).

Схема включення підсилювача – неінвертуюча. Резистори R3 та R4 створюють ланцюг негативного зворотного зв'язку (ООС). Коефіцієнт посилення дорівнює:

Ку = R4 / R3 + 1 = 28,5 рази = 29 дБ

Це майже дорівнює оптимальному значенню 30 дБ. Змінювати коефіцієнт посилення можна, змінюючи резистор R3. Врахуйте, що робити Ку менше 20 не можна - мікросхема може самозбуджуватися. Більше 60 його також робити не варто - глибина ООС зменшиться, а спотворення зростуть. При значеннях опорів, зазначених на схемі, при вхідному напрузі 0,5 вольт вихідна потужність на навантаженні 4 ома дорівнює 50 Вт. Якщо чутливості підсилювача не вистачає, краще використовувати попередній підсилювач.

Значення опорів дещо більше, ніж рекомендовано виробником. Це по-перше, збільшує вхідний опір, що приємно для джерела сигналу (для отримання максимального балансу по постійному струму потрібно, щоб R4 дорівнювало R2). По-друге, покращує умови роботи електролітичного конденсатора С3. І по-третє, посилює сприятливий вплив С4. Про це детальніше. Конденсатор С3 послідовно з R3 створює 100% ООС по постійному струму (опір постійному струму у нього нескінченність, і Ку виходить рівним одиниці). Щоб вплив С3 на посилення низьких частот було мінімальним, його ємність має бути досить великою. Частота, де вплив С3 стає помітною дорівнює:

F [Гц] = 1000 / (6,28 * R3 [кОм] * С3 [мкФ]) = 1,3 Гц

Ця частота має бути дуже низька. Справа в тому, що С3 – електролітичний полярний, а на нього подається змінна напруга та струм, що для нього дуже погано. Тому що менше значення цієї напруги, тим менше спотворення, внесені С3. З цією ж метою його максимально допустима напруга вибирається досить великою (50В), хоча напруга на ньому не перевищує 100 мілівольт. Дуже важливо, щоб частота зрізу ланцюга R3С3 була набагато нижчою, ніж вхідний ланцюг R2С2. Адже коли проявляється вплив С3 через зростання його опору, то й напруга на ньому збільшується (вихідна напруга услителя перерозподіляється між R4, R3 і С3 пропорційно їх опорам). Якщо ж цих частотах вихідна напруга падає (через падіння вхідної напруги), те й напруга на С3 не зростає. В принципі, як С3 можна використовувати неполярний конденсатор, але я не можу однозначно сказати, чи покращиться від цього звук, чи погіршиться: неполярний конденсатор це "два в одному" полярних, включених зустрічно.

Конденсатор С4 шунтує С3 на високих частотах: електроліти мають ще один недолік (насправді недоліків багато, це розплата за високу питому ємність) - вони погано працюють на частотах вище 5-7 кГц (дорогі краще, наприклад Black Gate, ціною 7- 12 євро за штуку непогано працює і на 20 кгц). Плівковий конденсатор С4 "бере високі частоти він", цим знижуючи спотворення, внесені ними конденсатором С3. Чим більша ємність С4 – тим краще. А його максимальна робоча напруга може бути порівняно невеликою.

Ланцюг С7R9 збільшує стійкість підсилювача. У принципі підсилювач дуже стійкий, і без нього можна обійтися, але мені траплялися екземпляри мікросхем, які без цього ланцюга працювали гірше. Конденсатор С7 повинен бути розрахований на напругу не нижче напруги живлення.

Конденсатори С8 та С9 здійснюють так звану вольтодобавку. Через них частина вихідної напруги надходить назад у передконечний каскад і складається у напругою живлення. В результаті напруга живлення всередині мікросхеми виявляється вищою, ніж напруга джерела живлення. Це потрібно тому, що вихідні транзистори забезпечують вихідну напругу вольт на 5 менше, ніж напруга на входах. Таким чином, щоб отримати на виході 25 вольт, потрібно подати на затвори транзисторів напругу 30 вольт, а де взяти? Ось і беремо його з виходу. Без ланцюга вольтодобавки вихідна напруга мікросхеми було б вольт на 10 менше, ніж напруга живлення, а з цим ланцюгом всього на 2-4. Плівковий конденсатор С9 бере роботу він на високих частотах, де С8 працює гірше. Обидва конденсатори повинні витримувати напругу не нижче 1,5 напруги живлення.

Резистори R5-R8, конденсатори С5, С6 та діод D1 керують режимами Mute та StdBy при включенні та вимкненні живлення (див. Режими Mute та StandBy у мікросхемі TDA7294/TDA7293). Вони забезпечують правильну послідовність увімкнення/вимкнення цих режимів. Правда все добре працює і при "неправильній" їх послідовності, так що таке управління необхідно більше для свого насолоди.

Конденсатори С10-С13 фільтрують живлення. Їх використання обов'язково - навіть із найкращим джерелом живлення опору та індуктивності з'єднувальних проводів можуть вплинути на роботу підсилювача. За наявності цих конденсаторів ніякі дроти не страшні (в розумних межах)! Зменшувати ємності не варто. Мінімум 470 мкФ для електролітів та 1 мкФ для плівкових. При встановленні на плату необхідно, щоб висновки були максимально короткими і добре пропаяні - не шкодуйте припою. Всі ці конденсатори повинні витримувати напругу не нижче 1,5 напруги живлення.

І, нарешті, резистор R10. Він служить для поділу вхідної та вихідної землі. "На пальцях" його призначення можна пояснити так. З виходу підсилювача через навантаження землі протікає великий струм. Може так статися, що цей струм, протікаючи "земляним" провідником, протікає і через ту ділянку, по якій тече вхідний струм (від джерела сигналу, через вхід підсилювача, і далі назад до джерела по "землі"). Якби опір провідників був нульовим, то нічого страшного. Але опір хоч і маленький, але не нульовий, тому на опорі "земляного" дроту з'являтиметься напруга (закон Ома: U=I*R), що складеться із вхідною. Таким чином вихідний сигнал підсилювача потрапить на вхід, причому цей зворотний зв'язок нічого хорошого не принесе, тільки будь-яку гидоту. Опір резистора R10 хоч і мало (оптимальне значення 1...5 Ом), але набагато більше, ніж опір земляного провідника, і через нього (резистор) у вхідний ланцюг потрапить у сотні разів менший струм, ніж без нього.

В принципі, при гарному розведенні плати (а вона в мене хороша) цього не станеться, але з іншого боку, щось подібне може статися в "макромасштабі" по ланцюзі джерело-сигналу-підсилювач-навантаження. Резистор допоможе й у разі. Втім, його можна цілком замінити перемичкою - він використаний виходячи з принципу "краще перебдіти, ніж недомогти".

Джерело живлення

Підсилювач живиться двополярною напругою (тобто це два однакові джерела, з'єднані послідовно, а їх загальна точка підключена до землі).

Мінімальна напруга живлення за датасітом +- 10 вольт. Я особисто пробував живити від +-14 вольт - мікросхема працює, але чи варто так робити? Адже вихідна потужність виходить мізерною! Максимальна напруга живлення залежить від опору навантаження (це напруга кожного плеча джерела):

Опір навантаження, Ом Максимальна напруга живлення,
4 27
6 31
8 35

Ця залежність викликана допустимим нагріванням мікросхеми. Якщо мікросхема встановлена ​​на маленькому радіаторі, напруга живлення краще зменшити. Максимальна вихідна потужність, що отримується від підсилювача, приблизно описується формулою:

Де одиниці: В, Ом, Вт (я окремо досліджую це питання і опишу), а Uіп – напруги одного плеча джерела живлення в режимі мовчання.

Потужність блоку живлення повинна бути ват на 20 більше, ніж вихідна потужність. Діоди випрямляча розраховані струм не менше 10 Ампер. Місткість конденсаторів фільтра не менше 10 000 мкФ на плече (можна і менше, але максимальна потужність знизиться, а спотворення зростуть).

Потрібно пам'ятати, що напруга випрямляча на холостому ході в 1,4 рази вище, ніж напруга на обмотці трансформатора трансформатора, тому не спалить мікросхему! Проста, але досить точна програма розрахунку блоку живлення (zip-файл близько 230 кБайт). І не забувайте, що для стереопідсилювача потрібен вдвічі потужніший блок живлення (при розрахунку за пропонованою програмою все враховується автоматично).

Від імпульсного джерела схема теж працює, але тут високі вимоги пред'являються до самого джерела - малі пульсації, можливість віддавати струм до 10 ампер без проблем, сильних "просідань" і зривів генерації. Пам'ятайте, що високочастотні пульсації пригнічуються мікросхемою набагато гірше, тому рівень спотворень може підвищиться в 10-100 разів, хоча "на вигляд" там усе гаразд. Хороше імпульсне джерело, придатне для Hi-Fi аудіо - це складний і недешевий пристрій, тому виготовити "старомодний" аналоговий блок живлення буде найчастіше простіше і дешевше.

Друкована плата одностороння та має розміри 65х70 мм:


Плата розведена з урахуванням усіх вимог, що висуваються до розведення високоякісних підсилювачів. Вхід розведений максимально далеко від виходу, і укладений в "екран" із розділеної землі – вхідний та вихідний. Доріжки живлення забезпечують максимальну ефективність фільтруючих конденсаторів (при цьому довжина висновків конденсаторів С10 і С12 повинна бути мінімальна). У своїй експериментальній платі я встановив клемники для підключення входу, виходу та живлення - місце під них передбачено (може дещо заважати конденсатор С10), але для стаціонарних конструкцій краще всі ці дроти припаяти - так надійніше.

Широкі доріжки крім низького опору мають ще ту перевагу, що важче відшаровуються при перегріві. Та й при виготовленні "лазерно-прасним" методом якщо десь і не "продрукується" квадрат 1 мм х 1 мм, то не страшно - все одно провідник не обірветься. Крім того, широкий провідник краще тримає важкі деталі (а тонкий може просто відклеїтись від плати).

На платі лише одна перемичка. Вона лежить під висновками мікросхеми, тому її потрібно монтувати першою, а під висновками залишити достатньо місця, щоби не замкнуло.

Резистори все, крім R9 потужністю 0,12 Вт, Конденсатори С9, С10, С12 К73-17 63В, С4 я використовував К10-47в 6,8 мкФ 25В (у коморі завалявся... З такою ємністю навіть без конденсатора С3 частота зрізу ланцюга ООС виходить 20 Гц – там, де не потрібно глибоких басів, одного такого конденсатора цілком достатньо). Однак, я рекомендую всі конденсатори використовувати типу К73-17. Використання дорогих "аудіофільських" я вважаю невиправданим економічно, а дешеві "керамічні" дадуть найгірший звук (це за ідеєю, в принципі - будь ласка, тільки пам'ятайте, що деякі з них витримують напругу не більше 16 вольт і як С7 їх використовувати не можна). Електроліти підійдуть будь-які сучасні. На платі нанесено полярність підключення всіх електролітичних конденсаторів та діода. Діод - будь-який малопотужний, що витримує зворотну напругу не менше 50 вольт, наприклад 1N4001-1N4007. Високочастотні діоди краще не використовувати.

У кутах плати передбачено місце для отворів кріпильних гвинтів М3 - можна кріпити плату тільки за корпус мікросхеми, але все ж таки надійніше ще й прихопити гвинтами.

Мікросхему обов'язково встановити на радіатор площею щонайменше 350 см2. Краще більше. У принципі, у неї вбудований тепловий захист, але долю краще не спокушати. Навіть якщо передбачається активне охолодження, все одно радіатор повинен бути досить масивним: при імпульсному тепловиділенні, що характерно для музики, тепло ефективніше відбирається теплоємністю радіатора (тобто велика холодна залізка), ніж розсіюванням у навколишнє середовище.

Металевий корпус мікросхеми з'єднаний із "мінусом" живлення. Звідси виникають два способи встановлення її на радіатор:

Через ізолюючу прокладку, при цьому радіатор може бути електрично з'єднаний з корпусом.
Безпосередньо, при цьому радіатор обов'язково електрично ізольований від корпусу.

Другий варіант (мій улюблений) забезпечує краще охолодження, але вимагає акуратності, наприклад, не демонтувати мікросхему при включеному живленні.

В обох випадках потрібно використовувати теплопровідну пасту, причому в 1-му варіанті вона повинна бути нанесена між корпусом мікросхеми і прокладкою, і між прокладкою і радіатором.

Налагодження підсилювача

Спілкування в інтернеті показує, що 90% усіх проблем з апаратурою складає її "неналагодженість". Тобто, спаявши чергову схему, і не зумівши її налагодити, радіоаматор ставить на ній хрест, і почув оголошує схему поганий. Тому налагодження - найважливіший (і найчастіше найскладніший) етап створення електронного пристрою.

Правильно зібраний підсилювач налагодження не потребує. Але, оскільки ніхто не гарантує, що всі деталі абсолютно справні, при першому включенні потрібно бути обережними.

Перше включення проводиться без навантаження та з відключеним джерелом вхідного сигналу (краще взагалі закоротити вхід перемичкою). Добре було б у ланцюг живлення (і в "плюс" і в "мінус" між джерелом пітвію і самим підсилювачем) включити запобіжники порядку 1А. Короткочасно (~0,5 сек.) подаємо напругу живлення і переконуємося, що струм, що споживається від невеликого джерела - запобіжники не згоряють. Зручно, якщо у джерелі є світлодіодні індикатори – при відключенні від мережі, світлодіоди продовжують горіти не менше 20 секунд: конденсатори фільтра довго розряджаються маленьким струмом спокою мікросхеми.

Якщо споживаний мікросхемою струм великий (більше 300 мА), причин може бути багато: КЗ в монтажі; поганий контакт у "земляному" дроті від джерела; переплутані "плюс" та "мінус"; висновки мікросхеми стосуються перемички; несправна мікросхема; неправильно впаяні конденсатори С11, С13; несправні конденсатори С10-С13.

Переконавшись, що зі струмом спокою все ОК, сміливо вмикаємо живлення та вимірюємо постійну напругу на виході. Його величина не повинна перевищувати +-0,05 В. Велика напруга говорить про проблеми з С3 (рідше С4), або з мікросхемою. Траплялися випадки, коли "міжземельний" резистор або був погано пропаяний, або замість 3 Ом мав опір 3 кОм. При цьому на виході була 10...20 вольт. Підключивши до виходу вольтметр змінного струму, переконуємося, що змінна напруга на виході дорівнює нулю (це краще робити із замкнутим входом, або просто з непідключеним вхідним кабелем, інакше на виході будуть перешкоди). Наявність на виході змінної напруги говорить про проблеми з мікросхемою або ланцюгами С7R9, С3R3R4, R10. На жаль, найчастіше звичайні тестери не можуть виміряти високочастотну напругу, яка з'являється при самозбудженні (до 100 кГц), тому найкраще використовувати осцилограф.

Якщо і тут все гаразд, підключаємо навантаження, ще раз перевіряємо на відсутність збудження вже з навантаженням, і все можна слухати!

Але краще все ж таки провести ще один тест. Справа в тому, що самим, на мій погляд, мерзенним видом збудження підсилювача, є "дзвін" - коли збудження з'являється лише за наявності сигналу, причому за його певної амплітуди. Тому що його важко виявити без осцилографа та звукового генератора (та й усунути непросто), а звук псується колосально через величезні інтермодуляційні спотворення. Причому на слух це сприймається як " важкий " звук, тобто. без будь-яких додаткових призвуків (бо частота дуже висока), тому слухач і знає, що він підсилювач збуджується. Просто послухає і вирішить, що мікросхема "погана", і "не звучить".

При правильному збиранні підсилювача та нормальному джерелі живлення такого бути не повинно.

Однак іноді буває, і ланцюг С7R9 таки бореться з такими речами. АЛЕ! У нормальній мікросхемі все ОК і за відсутності С7R9. Мені траплялися екземпляри мікросхеми з дзвоном, у них проблема вирішувалася запровадженням ланцюга С7R9 (тому я його й використовую, хоч у датасіті його й немає). Якщо подібна гидота має місце навіть за наявності С7R9, то можна спробувати її усунути, "погравшись" із опором (його можна зменшити до 3 Ом), але я б не радив використовувати таку мікросхему - це якийсь шлюб, і хто його знає, що у ній ще вилізе.

Проблема в тому, що "дзвін" можна побачити тільки на осцилографі, при подачі на підсилювач сигналу зі звукового генератора (на реальній музиці його можна і не помітити) – а це обладнання є далеко не у всіх радіоаматорів. (Хоча, якщо хочете цим справою добре займатися, постарайтеся такі прилади поміти, хоча б десь ними користуватися). Але якщо бажаєте якісного звуку - постарайтеся перевіритись на приладах - "дзвін" - найпідступніша річ, і здатний зашкодити якості звучання тисячею способів. Мої плати

- Сусід запарив по батареї стукати. Зробив музику голосніше, щоби його не чути.
(З фольклору аудіофілів).

Епіграф іронічний, але аудіофіл зовсім не обов'язково "хворий на всю голову" з фізіономією Джоша Ернеста на брифінгу з питань відносин з РФ, якого "пре" тому, що сусіди "щасливі". Хтось хоче слухати серйозну музику вдома, як у залі. Якість апаратури для цього потрібна така, яка у любителів децибел гучності як таких просто не міститься там, де у розсудливих людей розум, але в останніх він за розум заходить від цін на відповідні підсилювачі (УМЗЧ, підсилювач потужності звукової частоти). А в когось попутно виникає бажання долучитися до корисних та захоплюючих сфер діяльності – техніки відтворення звуку та взагалі електроніки. Які у вік цифрових технологій нерозривно пов'язані і можуть стати високоприбутковою та престижною професією. Оптимальний у всіх відносинах перший крок у цій справі – зробити підсилювач своїми руками: саме УМЗЧ дозволяє з початковою підготовкою на базі шкільної фізики на тому самому столі пройти шлях від найпростіших конструкцій на піввечора (які, проте, непогано «співають») до найскладніших агрегатів, через які із задоволенням зіграє і хороша рок-група.Мета цієї публікації – висвітлити перші етапи цього шляху для початківців і, можливо, повідомити щось нове досвідченим.

Найпростіші

Отже, спочатку спробуємо зробити підсилювач звуку, який просто працює. Щоб грунтовно вникнути в звукотехніку, доведеться поступово освоїти досить теоретичного матеріалу і не забувати в міру просування збагачувати багаж знань. Але будь-яка розумність засвоюється легше, коли бачиш і мацаєш, як вона працює в залозі. У цій статті далі теж без теорії не обійдеться - в тому, що потрібно знати спочатку і що можна пояснити без формул і графіків. А поки що достатньо буде вміння і користуватися мультитестером.

Примітка:якщо ви досі не паяли електроніку, врахуйте її компоненти не можна перегрівати! Паяльник – до 40 Вт (краще 25 Вт), максимально допустимий час паяння без перерви – 10 с. Паяний висновок для тепловідведення утримується в 0,5-3 см від місця паяння з боку корпусу приладу медичним пінцетом. Кислотні та ін. Активні флюси застосовувати не можна! Припій - ПОС-61.

Зліва на рис.- Найпростіший УМЗЧ, «який просто працює». Його можна зібрати як на германієвих, так і кремнієвих транзисторах.

На цій крихті зручно освоювати ази налагодження УМЗЧ з безпосередніми зв'язками між каскадами, що дають найчистіший звук.

  • Перед першим увімкненням живлення навантаження (динамік) відключаємо;
  • Замість R1 впаюємо ланцюжок із постійного резистора на 33 ком і змінного (потенціометра) на 270 ком, тобто. перший прим. вчетверо меншого, а другий прим. удвічі більшого номіналу проти вихідного за схемою;
  • Подаємо живлення і, обертаючи двигун потенціометра, у точці, позначеній хрестиком, виставляємо вказаний струм колектора VT1;
  • Знімаємо харчування, випоюємо тимчасові резистори і вимірюємо їх загальний опір;
  • Як R1 ставимо резистор номіналу зі стандартного ряду, найближчого до виміряного;
  • Замінюємо R3 на ланцюжок постійний 470 Ом + потенціометр 3,3 кОм;
  • Так само, як за пп. 3-5, в т. а виставляємо напругу, що дорівнює половині напруги живлення.

Точка а, звідки знімається сигнал навантаження це т. зв. середня точка підсилювача. У УМЗЧ з однополярним харчуванням у ній виставляють половину його значення, а УМЗЧ у двополярним харчуванням – нуль щодо загального проводу. Це називається регулюванням балансу підсилювача. У однополярних УМЗЧ з ємнісною розв'язкою навантаження відключати її на час налагодження не обов'язково, але краще звикати робити це рефлекторно: розбалансований 2-полярний підсилювач із підключеним навантаженням здатний спалити свої ж потужні та дорогі вихідні транзистори, а то й «новий, хороший» і дуже дорогий потужний динамік.

Примітка:компоненти, що вимагають підбору при налагодженні пристрою в макеті, на схемах позначаються або зірочкою (*), або штрих-апостроф (').

У центрі тому ж рис.- Простий УМЗЧ на транзисторах, що розвиває вже потужність до 4-6 Вт на навантаженні 4 Ом. Хоч і працює він, як і попередній, у т. зв. класі AB1, не призначеному для Hi-Fi озвучування, але якщо замінити парою таких підсилювач класу D (див. далі) у дешевих китайських комп'ютерних колонках, їх звучання помітно покращується. Тут дізнаємося про ще одну хитрість: потужні вихідні транзистори потрібно ставити на радіатори. Компоненти, що потребують додаткового охолодження, на схемах обводять пунктиром; правда, далеко не завжди; іноді – із зазначенням необхідної площі, що розсіює тепловідведення. Налагодження цього УМЗЧ – балансування за допомогою R2.

Праворуч на рис.- Ще не монстр на 350 Вт (як був показаний на початку статті), але вже цілком солідний звірюга: простий підсилювач на транзисторах потужністю 100 Вт. Музику через нього можна слухати, але не Hi-Fi, клас роботи – AB2. Однак для озвучування майданчика для пікніка або зборів на відкритому повітрі, шкільного актового чи невеликого торгового залу він цілком придатний. Аматорський рок-гурт, маючи за таким УМЗЧ на інструмент, може успішно виступати.

У цьому УМЗЧ виявляються ще дві хитрощі: по-перше, в дуже потужних підсилювачах каскад розгойдування потужного виходу теж потрібно охолоджувати, тому VT3 ставлять на радіатор від 100 кв. див. Для вихідних VT4 та VT5 потрібні радіатори від 400 кв. див. По-друге, УМЗЧ із двополярним харчуванням зовсім без навантаження не балансуються. То один, то інший вихідний транзистор йде у відсічення, а пов'язаний у насичення. Потім на повній напрузі живлення стрибки струму при балансуванні здатні вивести з ладу вихідні транзистори. Тому для балансування (R6, чи здогадалися?) підсилювач запитують від +/–24 В, а замість навантаження включають дротяний резистор 100…200 Ом. До речі, закорючки у деяких резисторах на схемі – римські цифри, що позначають їхню необхідну потужність розсіювання тепла.

Примітка:джерело живлення для цього УМЗЧ потрібне потужністю від 600 Вт. Конденсатори фільтра, що згладжує – від 6800 мкФ на 160 В. Паралельно електролітичним конденсаторам ІП включаються керамічні по 0,01 мкФ для запобігання самозбудження на ультразвукових частотах, здатного миттєво спалити вихідні транзистори.

На польовиках

На слід. Мал. – ще один варіант досить потужного УМЗЧ (30 Вт, а при напрузі живлення 35 В – 60 Вт) на потужних польових транзисторах:

Звук від нього вже тягне на вимоги до Hi-Fi початкового рівня (якщо, зрозуміло, УМЗЧ працює на соотв. Акустичні системи, АС). Потужні польовики не вимагають великої потужності для розгойдування, тому і передпотужного каскаду немає. Ще потужні польові транзистори за жодних несправностей не спалюють динаміки – самі швидше згоряють. Теж неприємно, але все-таки дешевше, ніж міняти дорогу басову голівку гучномовця (РР). Балансування і взагалі налагодження цього УМЗЧ не потрібні. Недолік у нього, як у конструкції для початківців, всього один: потужні польові транзистори набагато дорожчі за біполярні для підсилювача з такими ж параметрами. Вимоги до ІП - аналогічні перед. випадку, але потужність його потрібна від 450 Вт. Радіатори – від 200 кв. див.

Примітка:не треба будувати потужні УМЗЧ на польових транзисторах імпульсних джерел живлення, напр. комп'ютерні. При спробах "загнати" їх в активний режим, необхідний для УМЗЧ, вони або просто згоряють, або звук дають слабкий, а за якістю "ніякий". Те саме стосується потужних високовольтних біполярних транзисторів, напр. з малої розгортки старих телевізорів.

Відразу нагору

Якщо ви вже зробили перші кроки, то цілком природним буде бажання збудувати УМЗЧ класу Hi-Fi, не вдаючись надто глибоко в теоретичні нетрі.Для цього доведеться розширити парк приладів - потрібен осцилограф, генератор звукових частот (ГЗЧ) і мілівольтметр змінного струму з можливістю вимірювання постійної складової. Прототипом для повторення краще взяти УМЗЧ Е. Гумелі, докладно описаний у «Радіо» №1 за 1989 р. Для його будівництва знадобиться трохи недорогих доступних компонентів, але якість задовольняє дуже високим вимогам: потужність до 60 Вт, смуга 20-20 000 Гц, нерівномірність АЧХ 2 дБ, коефіцієнт нелінійних спотворень (КНІ) 0,01%, рівень власних шумів -86 дБ. Однак налагодити підсилювач Гумелі досить складно; якщо ви з ним упораєтесь, можете братися за будь-який інший. Втім, деякі з відомих нині обставин набагато спрощують налагодження цього УМЗЧ, див. нижче. Маючи на увазі це і те, що до архівів «Радіо» пробратися не всім вдається, доречно буде повторити основні моменти.

Схеми простого високоякісного УМЗЛ

Схеми УМЗЧ Гумелі та специфікація до них дано на ілюстрації. Радіатори вихідних транзисторів – від 250 кв. див. для УМЗЧ за рис. 1 та від 150 кв. див. для варіанта за рис. 3 (нумерація оригінальна). Транзистори передвихідного каскаду (КТ814/КТ815) встановлюються на радіатори зігнуті з алюмінієвих пластин 75х35 мм товщиною 3 мм. Замінювати КТ814/КТ815 на КТ626/КТ961 не варто, звук помітно не покращується, але налагодження серйозно не може.

Цей УМЗЧ дуже критичний до електроживлення, топології монтажу та загальної, тому налагоджувати його потрібно у конструктивно закінченому вигляді та лише зі штатним джерелом живлення. При спробі запитати від стабілізованого ІП вихідні транзистори згоряють одразу. Тож на рис. дано креслення оригінальних друкованих плат та вказівки щодо налагодження. До них можна додати, що, по-перше, якщо при першому включенні помітний «збуд», з ним борються, змінюючи індуктивність L1. По-друге, висновки встановлюваних на плати деталей повинні бути не довшими за 10 мм. По-третє, змінювати топологію монтажу вкрай небажано, але, якщо треба, на боці провідників обов'язково повинен бути рамковий екран (земляна петля, виділена кольором на рис.), а доріжки електроживлення повинні проходити поза нею.

Примітка:розриви в доріжках, до яких підключаються основи потужних транзисторів – технологічні, для налагодження, після чого запаюються краплями припою.

Налагодження цього УМЗЧ багато спрощується, а ризик зіткнутися з «збудком» у процесі користування зводиться до нуля, якщо:

  • Мінімізувати міжблочний монтаж, помістивши плату на радіаторах потужних транзисторів.
  • Повністю відмовитися від роз'ємів усередині, виконавши весь монтаж лише паянням. Тоді не потрібні будуть R12, R13 у потужному варіанті або R10 R11 у менш потужному (на схемах вони пунктирні).
  • Використовувати для внутрішнього монтажу аудіопроводу із безкисневої міді мінімальної довжини.

За виконання цих умов із порушенням проблем немає, а налагодження УМЗЧ зводиться до рутинної процедури, описаної на рис.

Провід для звуку

Аудіопроводу не вигадка. Необхідність їх застосування нині безсумнівна. У міді з домішкою кисню на гранях кристаллітів металу утворюється найтонша плівочка оксиду. Оксиди металів напівпровідники та, якщо струм у дроті слабкий без постійної складової, його форма спотворюється. За ідеєю, спотворення на міріадах кристалітів повинні компенсувати один одного, але трохи (схоже, обумовлена ​​квантовими невизначеностями) залишається. Достатня, щоби бути поміченою вимогливими слухачами на тлі найчистішого звуку сучасних УМЗЧ.

Виробники та торговці без зазріння совісті підсовують замість безкисневої звичайну електротехнічну мідь – відрізнити одну від одної на око неможливо. Однак є сфера застосування, де підробка не проходить однозначно: кабель кручена пара для комп'ютерних мереж. Покласти сітку з довгими сегментами «леварем», вона або зовсім не запуститься, або постійно глючить. Дисперсія імпульсів, чи розумієш.

Автор, коли тільки ще пішли розмови про аудіопроводи, зрозумів, що, в принципі, це не порожня балаканина, тим більше, що безкисневі дроти на той час уже давно використовувалися в техніці спецпризначення, з якою він за діяльністю був добре знайомий. Взяв тоді і замінив штатний шнур своїх навушників ТДС-7 саморобним із «вітухи» з гнучкими багатожильними проводами. Звук, на слух, стабільно покращав для наскрізних аналогових треків, тобто. на шляху від студійного мікрофона до диска, що ніде не піддавалися оцифровці. Особливо яскраво зазвучали записи на вінілі, зроблені за технологією DMM (Direct Meta lMastering, безпосереднє нанесення металу). Після цього міжблочний монтаж всього домашнього аудіо був перероблений на «вітушний». Тоді поліпшення звучання стали відзначати і випадкові люди, до музики байдужі і заздалегідь не повідомлені.

Як зробити міжблочні дроти з кручений пари, див. відео.

Відео: міжблокові дроти з витої пари своїми руками

На жаль, гнучка «вітуха» скоро зникла з продажу – погано трималася в розтисках, що обтискалися. Однак, до відома читачів, тільки з безкисневої міді робиться гнучкий «військовий» провід МГТФ та МГТФЕ (екранований). Підробка неможлива, т.к. на звичайній міді стрічкова фторопластова ізоляція досить швидко розповзається. МГТФ зараз є в широкому продажу і коштує набагато дешевше фірмових, з гарантією, аудіопроводів. Нестача у нього одна: її неможливо виконати розцвіченою, але це можна виправити бирками. Є також і безкисневі обмотувальні дроти, див.

Теоретична інтермедія

Як бачимо, вже спочатку освоєння звукотехніки нам довелося зіткнутися з поняттям Hi-Fi (High Fidelity), висока вірність відтворення звуку. Hi-Fi бувають різних рівнів, які ранжуються слідом. основним параметрам:

  1. Смузі відтворюваних частот.
  2. Динамічному діапазону - відношенню в децибелах (дБ) максимальної (пікової) вихідної потужності до рівня власних шумів.
  3. Рівнем власних шумів у дБ.
  4. Коефіцієнту нелінійних спотворень (КНІ) на номінальній (довготривалій) вихідній потужності. КНД на пікової потужності приймається 1% або 2% залежно від методики вимірювань.
  5. Нерівномірності амплітудно-частотної характеристики (АЧХ) у смузі відтворюваних частот. Для АС – окремо на низьких (НЧ, 20-300 Гц), середніх (СЧ, 300-5000 Гц) та високих (ВЧ, 5000-20 000 Гц) звукових частот.

Примітка:відношення абсолютних рівнів будь-яких величин I (дБ) визначається як P(дБ) = 20lg(I1/I2). Якщо I1

Всі тонкощі та нюанси Hi-Fi потрібно знати, займаючись проектуванням та будівництвом АС, а що стосується саморобного Hi-Fi УМЗЧ для дому, то, перш ніж переходити до таких, потрібно чітко усвідомити вимоги до їх потужності, необхідної для озвучування даного приміщення, динамічного діапазону (динаміки), рівня власних шумів та КНІ. Домогтися від УМЗЧ смуги частот 20-20 000 Гц із завалом на краях по 3 дБ та нерівномірністю АЧХ на СЧ у 2 дБ на сучасній елементній базі не становить великих складнощів.

Гучність

Потужність УМЗЧ не самоціль, вона повинна забезпечувати оптимальну гучність відтворення звуку у приміщенні. Визначити її можна за кривими рівної гучності, див. Природних шумів у житлових приміщеннях тихіше 20 дБ немає; 20 дБ це лісова глуш у повний штиль. Рівень гучності в 20 дБ щодо порога чутності – це поріг виразності – шепіт розібрати ще можна, але музика сприймається лише як факт її наявності. Досвідчений музикант може визначити, який інструмент грає, але що саме – ні.

40 дБ - нормальний шум добре ізольованої міської квартири в тихому районі або заміського будинку - є поріг розбірливості. Музику від порога виразності до порога розбірливості можна слухати за наявності глибокої корекції АЧХ, насамперед, по басах. Для цього в сучасні УМЗЧ вводять функцію MUTE (приглушка, мутація, не мутація!), Що включає соотв. коригувальні ланцюги в УМЗЛ.

90 дБ – рівень гучності симфонічного оркестру у дуже гарному концертному залі. 110 дБ може видати оркестр розширеного складу в залі з унікальною акустикою, яких у світі не більше 10, це поріг сприйняття: звуки голосніше сприймаються ще як помітний за змістом зусиллям волі, але дратівливий шум. Зона гучності в житлових приміщеннях 20-110 дБ становить зону повної чутності, а 40-90 дБ – зону найкращої чутності, в якій непідготовлені та недосвідчені слухачі цілком сприймають сенс звуку. Якщо, звісно, ​​він у ньому є.

Потужність

Розрахунок потужності апаратури за заданою гучністю в зоні прослуховування чи не основне і найважче завдання електроакустики. Для себе в умовах краще йти від акустичних систем (АС): розрахувати їх потужність за спрощеною методикою, та прийняти номінальну (довготривалу) потужність УМЗЧ рівної пікової (музичної) АС. У разі УМЗЧ не додасть помітно своїх спотворень до таких АС, вони й так основне джерело нелінійності в звуковому тракті. Але й робити УМЗЧ занадто потужним годі було: у разі рівень його власних шумів може бути вище порога чутності, т.к. вважається він від рівня напруги вихідного сигналу максимальної потужності. Якщо вважати вже зовсім просто, то для кімнати звичайної квартири або будинку і АС з нормальною чутливістю (звуковою віддачею) можна прийняти слід. значення оптимальної потужності УМЗЧ:

  • До 8 кв. м – 15-20 Вт.
  • 8-12 кв. м – 20-30 Вт.
  • 12-26 кв. м - 30-50 Вт.
  • 26-50 кв. м – 50-60 Вт.
  • 50-70 кв. м – 60-100 Вт.
  • 70-100 кв. м - 100-150 Вт.
  • 100–120 кв. м - 150-200 Вт.
  • Понад 120 кв. м – визначається розрахунком за даними акустичних вимірів дома.

Динаміка

Динамічний діапазон УМЗЧ визначається за кривими рівної гучності та пороговими значеннями для різних ступенів сприйняття:

  1. Симфонічна музика та джаз із симфонічним супроводом – 90 дБ (110 дБ – 20 дБ) ідеал, 70 дБ (90 дБ – 20 дБ) прийнятно. Звук з динамікою 80-85 дБ у міській квартирі не відрізнить від ідеального жодний експерт.
  2. Інші серйозні музичні жанри - 75 дБ відмінно, 80 дБ "вище даху".
  3. Попса будь-якого роду та саундтреки до фільмів – 66 дБ за очі вистачить, т.к. Дані опуси вже при записі стискаються за рівнями до 66 дБ і навіть до 40 дБ, щоб можна було слухати на чому завгодно.

Динамічний діапазон УМЗЧ, правильно обраного для даного приміщення, вважають рівним його рівню власних шумів, взятому зі знаком + це т. зв. відношення сигнал/шум.

КНІ

Нелінійні спотворення (НІ) УМЗЧ - це складові спектру вихідного сигналу, яких не було у вхідному. Теоретично НІ найкраще «заштовхати» під рівень власних шумів, але технічно це важко реалізовано. Насправді беруть до уваги т. зв. ефект маскування: на рівнях гучності нижче прим. 30 дБ діапазон сприйманих людським вухом частот звужується, як і здатність розрізняти звуки частотою. Музиканти чують ноти, але оцінити тембр звуку не можуть. Люди без музичного слуху ефект маскування спостерігається вже на 45-40 дБ гучності. Тому УМЗЧ з КНД 0,1% (-60 дБ від рівня гучності в 110 дБ) оцінить як Hi-Fi рядовий слухач, а з КНД 0,01% (-80 дБ) можна вважати звуком, що не спотворює.

Лампи

Останнє твердження, можливо, викличе неприйняття, аж до запеклого, у адептів лампової схемотехніки: мовляв, справжній звук дають тільки лампи, причому не просто якісь, а окремі типи октальних. Заспокойтеся, панове – особливий ламповий звук не фікція. Причина – принципово різні діапазони спотворень у електричних ламп і транзисторів. Які, своєю чергою, обумовлені тим, що у лампі потік електронів рухається у вакуумі і квантові ефекти у ній виявляються. Транзистор прилад квантовий, там неосновні носії заряду (електрони і дірки) рухаються в кристалі, що без квантових ефектів взагалі неможливо. Тому спектр лампових спотворень короткий і чистий: у ньому чітко простежуються лише гармоніки до 3-ї – 4-ї, а комбінаційних складових (сум та різниць частот вхідного сигналу та їх гармонік) дуже мало. Тому за часів вакуумної схемотехніки КНД називали коефіцієнтом гармонік (КГ). У транзисторів спектр спотворень (якщо вони виміряні, обмовка випадкова, див. нижче) простежується аж до 15-ї і більш високих компонент, і комбінаційних частот в ньому хоч відбавляй.

Спочатку твердотільної електроніки конструктори транзисторних УМЗЧ брали для них звичний «ламповий» КНІ в 1-2%; звук із ламповим спектром спотворень такої величини рядовими слухачами сприймається як чистий. Між іншим, і самого поняття Hi-Fi тоді ще не було. Виявилося – звучать тьмяно та глухо. У процесі розвитку транзисторної техніки виробилося розуміння, що таке Hi-Fi і що для нього потрібно.

В даний час хвороби зростання транзисторної техніки успішно подолані і побічні частоти на виході хорошого УМЗЧ важко уловлюються спеціальними методами вимірювань. А лампову схемотехніку можна вважати, що перейшла в розряд мистецтва. Його основа може бути будь-якою, чому ж електроніці туди не можна? Тут доречною буде аналогія з фотографією. Ніхто не зможе заперечувати, що сучасна цифрозеркалка дає картинку незмірно більш чітку, докладну, глибоку за діапазоном яскравостей та кольору, ніж фанерна скринька з гармошкою. Але хтось крутим Никоном «клацає фотки» типу «це мій жирний кішок нажрався як гад і спалахне розкинувши лапи», а хтось Сміною-8М на свемовську ч/б плівку робить знімок, перед яким на престижній виставці товпиться народ.

Примітка:і ще раз заспокойтесь – не все так погано. На сьогодні у лампових УМЗЧ малої потужності залишилося принаймні одне застосування і не останньої важливості, для якого вони технічно необхідні.

Досвідчений стенд

Багато любителів аудіо, щойно навчившись паяти, тут же «йдуть у лампи». Це в жодному разі не заслуговує на осуд, навпаки. Інтерес до витоків завжди виправданий і корисний, а електроніка стала на лампах. Перші ЕОМ були ламповими, і бортова електронна апаратура перших космічних апаратів була також ламповою: транзистори тоді вже були, але не витримували позаземної радіації. Між іншим, тоді під найсуворішим секретом створювалися і лампові мікросхеми! На мікролампах із холодним катодом. Єдина відома згадка про них у відкритих джерелах є в рідкісній книзі Митрофанова та Пікерсгіля «Сучасні приймально-підсилювальні лампи».

Але вистачить лірики, до діла. Для любителів повозитися з лампами на рис. - Схема стендового лампового УМЗЧ, призначеного саме для експериментів: SA1 перемикається режим роботи вихідної лампи, а SA2 - напруга живлення. Схема добре відома в РФ, невелика доопрацювання торкнулася лише вихідного трансформатора: тепер можна не лише «ганяти» в різних режимах рідну 6П7С, а й підбирати для інших ламп коефіцієнт включення екранної сітки в ульралінійному режимі; для переважної більшості вихідних пентодів та променевих тетродів він або 0,22-0,25, або 0,42-0,45. Про виготовлення вихідного трансформатора див.

Гітаристам та рокерам

Це той випадок, коли без ламп не обійтися. Як відомо, електрогітара стала повноцінним солюючим інструментом після того, як попередньо посилений сигнал зі звукознімача стали пропускати через спеціальну приставку - фьюзер - навмисне спотворює його спектр. Без цього звук струни був дуже різким і коротким, т.к. електромагнітний звукознімач реагує лише на моди її механічних коливань у площині деки інструменту.

Незабаром виявилася неприємна обставина: звучання електрогітари з ф'юзером набуває повної сили і яскравості тільки на великих гучностях. Особливо це проявляється для гітар зі звукознімачом типу хамбакер, що дає "злий" звук. А як бути початківцю, вимушеному репетирувати вдома? Не йти ж до зали виступати, не знаючи точно, як там зазвучить інструмент. І просто любителям року хочеться слухати улюблені речі в повному соку, а рокери народ загалом пристойний і неконфліктний. Принаймні ті, кого цікавить саме рок-музика, а не антураж із епатажем.

Так ось, виявилося, що фатальний звук з'являється на рівнях гучності, прийнятних для житлових приміщень, якщо ламповий УМЗЧ. Причина – специфічна взаємодія спектра сигналу з фьюзера з чистим та коротким спектром лампових гармонік. Тут знову доречна аналогія: ч/б фото може бути набагато виразніше за кольоровий, т.к. залишає для перегляду лише контур та світло.

Тим, кому ламповий підсилювач потрібен не для експериментів, а через технічну необхідність, довго освоювати тонкощі лампової електроніки дозвілля, вони іншим захоплені. УМЗЧ у такому разі краще робити безтрансформаторний. Точніше – з однотактним узгоджуючим вихідним трансформатором, який працює без постійного підмагнічування. Такий підхід набагато спрощує та прискорює виготовлення найскладнішого та найвідповідальнішого вузла лампового УМЗЧ.

"Безтрансформаторний" ламповий вихідний каскад УМЗЧ та попередні підсилювачі до нього

Праворуч на рис. дана схема безтрансформаторного вихідного каскаду лампового УМЗЧ, а зліва - варіанти попереднього підсилювача для нього. Вгорі - з регулятором тембру за класичною схемою Баксандала, що забезпечує досить глибоке регулювання, але вносить невеликі фазові спотворення сигнал, що може бути істотно при роботі УМЗЧ на 2-смугову АС. Внизу – підсилювач з регулюванням тембру простіше, що не спотворює сигнал.

Але повернемося до «оконечника». У ряді зарубіжних джерел дана схема вважається одкровенням, однак ідентична їй, за винятком ємності електролітичних конденсаторів, виявляється в радянському «Довіднику радіоаматора» 1966 р. Товстезна книжка на 1060 сторінок. Не було тоді інтернету та баз даних на дисках.

Там же, праворуч на рис., Коротко, але ясно описані недоліки цієї схеми. Удосконалена з того ж джерела дана на слід. Мал. праворуч. У ній екранна сітка Л2 запитана від середньої точки анодного випрямляча (анодна обмотка силового трансформатора симетрична), а екранна сітка Л1 через навантаження. Якщо замість високоомних динаміків включити узгоджувальний трансформатор із звичайним динаміком, як у перед. схемою, вихідна потужність скласти бл. 12 Вт, т.к. активний опір первинної обмотки трансформатора набагато менше 800 Ом. КНИ цього кінцевого каскаду з трансформаторним виходом – прим. 0,5%

Як зробити трансформатор?

Головні вороги якості потужного сигнального НЧ (звукового) трансформатора - магнітне поле розсіювання, силові лінії якого замикаються, обминаючи магнітопровід (сердечник), вихрові струми в магнітопровід (струми Фуко) і, меншою мірою - магнітострикція в сердечнику. Через це явище недбало зібраний трансформатор «співає», гуде чи пищить. Зі струмами Фуко борються, зменшуючи товщину пластин магнітопроводу і додатково ізолюючи їх лаком при складанні. Для вихідних трансформаторів оптимальна товщина пластин – 0,15 мм, максимально допустима – 0,25 мм. Брати для вихідного трансформатора пластини тонше не слід: коефіцієнт заповнення керна (центрального стрижня магнітопроводу) сталлю впаде, перетин магнітопроводу для отримання заданої потужності доведеться збільшити, через що спотворення і втрати в ньому тільки зростуть.

У сердечнику звукового трансформатора, що працює з постійним підмагнічуванням (напр., анодним струмом однотактного вихідного каскаду), повинен бути невеликий (визначається розрахунком) немагнітний зазор. Наявність немагнітного зазору, з одного боку, зменшує спотворення сигналу постійного підмагнічування; з іншого - в магнітопроводі звичайного типу збільшує поле розсіювання і вимагає осердя більшого перерізу. Тому немагнітний зазор потрібно розраховувати на оптимум і виконувати якнайточніше.

Для трансформаторів, що працюють з підмагнічуванням, оптимальний тип сердечника – із пластин Шп (просічених), поз. 1 на рис. Вони немагнітний зазор утворюється при просічці керна і тому стабільний; його величина вказується у паспорті на пластини або заміряється набором щупів. Поле розсіювання мінімальне, т.к. бічні гілки, через які замикається магнітний потік, цілісні. З пластин Шп часто збирають і осердя трансформаторів без підмагнічування, т.к. пластини Шп роблять із високоякісної трансформаторної сталі. У такому разі сердечник збирають вперекришку (пластини кладуть просіканням то в один, то в інший бік), а його перетин збільшують на 10% проти розрахункового.

Трансформатори без підмагнічування краще мотати на сердечниках УШ (зменшеної висоти із розширеними вікнами), поз. 2. Вони зменшення поля розсіювання досягається з допомогою зменшення довжини магнітного шляху. Оскільки пластини УШ доступніші за Шп, з них часто набирають і сердечники трансформаторів з підмагнічуванням. Тоді збирання сердечника ведуть накрий: збирають пакет із Ш-пластин, кладуть смужку непровідного немагнітного матеріалу товщиною у величину немагнітного зазору, накривають ярмом з пакета перемичок і стягують разом обоймою.

Примітка:"звукові" сигнальні магнітопроводи типу ШЛМ для вихідних трансформаторів високоякісних лампових підсилювачів мало придатні, у них велике поле розсіювання.

На поз. 3 дана схема розмірів осердя для розрахунку трансформатора, на поз. 4 конструкція каркаса обмоток, але в поз. 5 - форма його деталей. Що ж до трансформатора для «безтрансформаторного» вихідного каскаду, його краще робити на ШЛМме вперекришку, т.к. підмагнічування мізерно мало (струм підмагнічування дорівнює струму екранної сітки). Головне завдання тут - зробити обмотки якомога компактніше з метою зменшення поля розсіювання; їхній активний опір все одно вийде набагато менше 800 Ом. Чим більше вільного місця залишиться у вікнах, краще вийшов трансформатор. Тому обмотки мотають виток до витка (якщо немає намотувального верстата, це маєта жахлива) з якомога тоншого дроту, коефіцієнт укладання анодної обмотки для механічного розрахунку трансформатора беруть 0,6. Обмотковий провід - марок ПЕТВ або ПЕММ, у них жила безкиснева. ПЕТВ-2 або ПЕММ-2 брати не треба, у них від подвійного лакування збільшений зовнішній діаметр і поле розсіювання буде більше. Первинну обмотку мотають першою, т.к. саме її поле розсіювання найбільше впливає звук.

Залізо цього трансформатора потрібно шукати з отворами в кутах пластин і стяжними скобами (див. рис. справа), т.к. "для повного щастя" складання магнітопроводу проводиться в слід. порядку (зрозуміло, обмотки з висновками та зовнішньою ізоляцією повинні бути вже на каркасі):

  1. Готують розбавлений вдвічі акриловий лак або, по-старому, шеллак;
  2. Пластини з перемичками швидко покривають лаком з одного боку і якнайшвидше, не придушуючи сильно, вкладають у каркас. Першу пластину кладуть лакованою стороною всередину, наступну - нелакованою стороною до першої лакованої і т.д;
  3. Коли вікно каркаса заповниться, накладають скоби і туго стягують болтами;
  4. Через 1-3 хв, коли видавлювання лаку із зазорів мабуть припиниться, додають пластин знову до заповнення вікна;
  5. Повторюють пп. 2-4, поки вікно не буде туго набите сталлю;
  6. Знову туго стягують сердечник та сушать на батареї тощо. 3-5 діб.

Зібраний за такою технологією сердечник має дуже хорошу ізоляцію пластин та заповнення сталлю. Втрат на магнітострикцію взагалі не виявляється. Але врахуйте - для сердечників їх пермалоя дана методика не застосовна, т.к. від сильних механічних впливів магнітні властивості пермалою незворотно погіршуються!

На мікросхемах

УМЗЧ на інтегральних мікросхемах (ІМС) роблять найчастіше ті, кого влаштовує якість звуку до середнього Hi-Fi, але більш приваблює дешевизна, швидкість, простота складання та повна відсутність будь-яких налагоджувальних процедур, які потребують спеціальних знань. Просто підсилювач на мікросхемах – оптимальний варіант для «чайників». Класика жанру тут - УМЗЧ на ІМС TDA2004, що стоїть на серії, дай бог пам'яті, вже років 20, зліва на рис. Потужність – до 12 Вт на канал, напруга живлення – 3-18 В однополярна. Площа радіатора – від 200 кв. див. для максимальної потужності. Гідність – здатність працювати на дуже низькоомне, до 1,6 Ом, навантаження, що дозволяє знімати повну потужність при живленні від бортової мережі 12 В, а 7-8 Вт – при 6-вольтовому живленні, наприклад, на мотоциклі. Однак вихід TDA2004 у класі В некомплементарний (на транзисторах однакової провідності), тому звучок точно не Hi-Fi: КНІ 1%, динаміка 45 дБ.

Більш сучасна TDA7261 звук дає не краще, але потужніше, до 25 Вт, т.к. верхня межа напруги живлення збільшена до 25 В. Нижня, 4,5 В, все ще дозволяє запитуватись від 6 В бортмережі, тобто. TDA7261 можна запускати практично від усіх бортмереж, крім літакової 27 В. За допомогою навісних компонентів (обв'язування, праворуч на рис.) TDA7261 може працювати в режимі мутування і з функцією St-By (Stand By, чекати), що переводить УМЗЧ в режим мінімального енергоспоживання за відсутності вхідного сигналу протягом певного часу. Зручності коштують грошей, тому для стерео потрібна буде пара TDA7261 із радіаторами від 250 кв. див. для кожної.

Примітка:Якщо вас чимось залучають підсилювачі з функцією St-By, врахуйте – чекати від них динаміки ширші за 66 дБ не варто.

"Надекономічна" по живленню TDA7482, зліва на рис., що працює в т. зв. клас D. Такі УМЗЧ іноді називають цифровими підсилювачами, що неправильно. Для справжньої оцифровки з аналогового сигналу знімають відліки рівня з частотою квантування, не менше ніж удвічі більшою за найвищу з відтворюваних частот, величина кожного відліку записується завадостійким кодом і зберігається для подальшого використання. УМЗЧ класу D – імпульсні. Вони аналог безпосередньо перетворюється на послідовність широтно-модулированных імпульсів (ШИМ) високої частоти, що й подається на динамік через фільтр низьких частот (ФНЧ).

Звук класу D з Hi-Fi не має нічого спільного: КНІ в 2% і динаміка в 55 дБ для УМЗЧ класу D вважаються дуже добрими показниками. І TDA7482 тут, треба сказати, вибір не оптимальний: інші фірми, що спеціалізуються на класі D, випускають ІМС УМЗЧ дешевше і вимагають меншої обв'язки, напр., D-УМЗЧ серії Paxx, праворуч на рис.

З TDAшек слід відзначити 4-канальну TDA7385, див. рис., на якій можна зібрати хороший підсилювач для колонок до середнього Hi-Fi включно, з поділом частот на 2 смуги або для системи з сабвуфером. Розфільтрування НЧ та СЧ-ВЧ у тому й іншому випадку робиться по входу на слабкому сигналі, що спрощує конструкцію фільтрів та дозволяє глибше розділити смуги. А якщо акустика сабвуферна, то 2 канали TDA7385 можна виділити під суб-УНЧ бруківки (див. нижче), а решта 2 задіяти для СЧ-ВЧ.

УМЗЧ для сабвуфера

Сабвуфер, що можна перекласти як «підбасовик» або, дослівно, «підгавкувач» відтворює частоти до 150-200 Гц, у цьому діапазоні людські вуха практично не здатні визначити напрямок джерела звуку. В АС із сабвуфером «підбасовий» динамік ставлять у готельне акустичне оформлення, це і є сабвуфер як такий. Сабвуфер розміщують, в принципі, як зручніше, а стереоефект забезпечується окремими СЧ-ВЧ каналами зі своїми малогабаритними АС, до акустичного оформлення яких особливо серйозних вимог не висувається. Знавці сходяться на тому, що стерео краще все ж таки слухати з повним поділом каналів, але сабвуферні системи істотно економлять кошти або працю на басовий тракт і полегшують розміщення акустики в малогабаритних приміщеннях, чому і користуються популярністю у споживачів зі звичайним слухом і не особливо вимогливих.

«Просочування» СЧ-ВЧ в сабвуфер, а з нього в повітря сильно псує стерео, але, якщо різко «обрубати» підбаси, що, до речі, дуже складно і дорого, то виникне дуже неприємний на слух ефект перескоку звуку. Тому розфільтрування каналів у сабвуферних системах проводиться двічі. На вході електричними фільтрами виділяються СЧ-ВЧ із басовими «хвостиками», які не перевантажують СЧ-ВЧ тракт, але забезпечують плавний перехід на підбас. Баси з СЧ «хвостиками» поєднуються і подаються на окремий УМЗЧ для сабвуфера. Дофільтровуються СЧ, щоб не псувалося стерео, в сабвуфері вже акустично: підбасовий динамік ставлять, напр., в перегородку між резонаторними камерами сабвуфера, що не випускають СЧ назовні, див.

До УМЗЧ для сабвуфера пред'являється низка специфічних вимог, з яких «чайники» головним вважають можливо більшу потужність. Це зовсім неправильно, якщо, скажімо, розрахунок акустики під кімнату дав для однієї колонки пікову потужність W, потужність сабвуфера потрібна 0,8(2W) або 1,6W. Напр. якщо для кімнати підходять АС S-30, то сабвуфер потрібен 1,6х30 = 48 Вт.

Набагато важливіше забезпечити відсутність фазових та перехідних спотворень: підуть вони – перескок звуку обов'язково буде. Що стосується КНД, то він допустимо до 1% Власні спотворення басів такого рівня не чути (див. криві рівної гучності), а «хвости» їх спектру в найкраще чутної СЧ області не виберуться із сабвуфера назовні.

Щоб уникнути фазових і перехідних спотворень, підсилювач для сабвуфера будують за т. зв. бруківці: виходи 2-х ідентичних УМЗЧ включають зустрічно через динамік; сигнали на входи подаються у протифазі. Відсутність фазових та перехідних спотворень у бруківці обумовлена ​​повною електричною симетрією шляхів вихідного сигналу. Ідентичність підсилювачів, що утворюють плечі моста, забезпечується застосуванням спарених УМЗЧ на ІМС, виконаних на одному кристалі; це, мабуть, єдиний випадок, коли підсилювач на мікросхемах кращий за дискретний.

Примітка:потужність мостового УМЗЧ не подвоюється, як вважають деякі, вона визначається напругою живлення.

Приклад схеми мостового УМЗЧ для сабвуфера до 20 кв. м (без вхідних фільтрів) на ІМС TDA2030 дано на рис. зліва. Додаткове відфільтрування СЧ здійснюється ланцюгами R5C3 та R'5C'3. Площа радіатора TDA2030 – від 400 кв. див. У мостових УМЗЧ з відкритим виходом є неприємна особливість: при розбалансі мосту в струмі навантаження з'являється постійна складова, здатна вивести з ладу динамік, а схеми захисту на підбас часто глючать, відключаючи динамік, коли не треба. Тому краще захистити дорогу НЧ головку "дубово", неполярними батареями електролітичних конденсаторів (виділено кольором, а схема однієї батареї дана на врізанні).

Трохи про акустику

Акустичне оформлення сабвуфера – особлива тема, але якщо тут дано креслення, то потрібні й пояснення. Матеріал корпусу – МДФ 24 мм. Труби резонаторів - з досить міцного пластику, що не дзвінить, напр., поліетилену. Внутрішній діаметр труб – 60 мм, виступи всередину 113 мм у великій камері та 61 у малій. Під конкретну головку гучномовця сабвуфер доведеться переналаштувати за найкращим басом і, водночас, за найменшим впливом на стереоефект. Для налаштування труби беруть свідомо більшу довжину і, засуваючи-висуваючи, домагаються необхідного звучання. Виступи труб назовні на звук не впливають, потім їх відрізають. Налаштування труб взаємозалежне, так що повозитися доведеться.

Підсилювач для навушників

Підсилювач для навушників роблять своїми руками найчастіше з 2-х причин. Перша – слухання «на ходу», тобто. поза домом, коли потужності аудіовиходу плеєра або смартфона не вистачає для розгойдування «гудзиків» або «лопухів». Друга – для висококласних домашніх навушників. Hi-Fi УМЗЧ для звичайної житлової кімнати потрібен з динамікою до 70-75 дБ, але динамічний діапазон найкращих сучасних стереонавушників перевищує 100 дБ. Підсилювач з такою динамікою коштує дорожче за деякі автомобілі, а його потужність буде від 200 Вт у каналі, що для звичайної квартири занадто багато: прослуховування на сильно заниженій проти номінальної потужності псує звук, див. вище. Тому має сенс зробити малопотужний, але з гарною динамікою окремий підсилювач саме для навушників: ціни на побутові УМЗЧ із таким доважком завищені явно безглуздо.

Схема найпростішого підсилювача для навушників на транзисторах дана на поз. 1 рис. Звук - хіба що для китайських «ґудзичок», працює в класі B. Економічності теж не відрізняється - 13-мм літієвих батарейок вистачає на 3-4 години при повній гучності. На поз. 2 - TDAшна класика для навушників «на хід». Звук, втім, дає цілком пристойний, до середнього Hi-Fi, дивлячись за параметрами оцифрування треку. Аматорським удосконаленням обв'язки TDA7050 немає числа, але переходу звуку на наступний рівень класності поки не досяг ніхто: сама «мікруха» не дозволяє. TDA7057 (поз. 3) просто функціональніший, можна підключати регулятор гучності на звичайному, не здвоєному потенціометрі.

УМЗЧ для навушників на TDA7350 (поз. 4) розрахований вже на розгойдування хорошої індивідуальної акустики. Саме на цій ІМС зібрані підсилювачі для навушників у більшості побутових УМЗЧ середнього та високого класу. УМЗЧ для навушників на KA2206B (поз. 5) вважається вже професійним: його максимальної потужності в 2,3 Вт вистачає і для розгойдування таких серйозних ізодинамічних «лопухів», як ТДС-7 та ТДС-15.

Підсилювач зроблений за схемою працюючої в режимі АВ, гальванічний зв'язок всіх каскадів дозволив охопити весь підсилювач петлею негативним зворотним зв'язком. Що забезпечило високу стабільність роботи при зміні напруги живлення і температури навколишнього середовища. Напруга ОС знімається з емітерів вихідних транзисторів і через R9 надходить на емітер VT1. Друга ООС через R10 введена зменшення впливу конденсатора С5 на вихідний опір підсилювача. Що додатково впливає зниження КНИ.
Напруга усунення бази вихідних транзисторів надходить на VD2 включеного в ланцюг колектора VT2. Нелінійність вольт-амперної характеристики діода та її залежність від температури навколишнього середовища використовується для стабілізації вихідного каскаду.
С4 запобігає самозбудженню УМЗЧ на ВЧ, R11 запобігає порушенню режиму роботи у разі обриву ланцюга навантаження.

Характеристики:

  • Номінальна потужність 16Вт, максимальна 20Вт
  • Номінальна чутливість 0,32В
  • КНІ на f=1кГц трохи більше 0,25%
  • Смуга пропускання при нерівномірності АЧХ трохи більше 2 дБ від 20 до 20кГц
  • Відношення сигн\шум -80Дб

Джерело живлення - не стабілізоване, КТ3102Г можна замінити на КТ3102Е або на КТ 342Г. КТ630 на КТ807 він встановлений на невеликий металевий радіатор. Вихідні транзистори мають радіатор площею щонайменше 100 кв див.

Налагодження зводиться до симетрування динамічної прохідної характеристики шляхом підбору номіналів R1 R2. При цьому постійна напруга на емітерах вихідних транзисторів повинна дорівнювати половині живлення. Крім того, VD2 підбираємо так щоб, на ньому падала напруга 0,9В.

Література - Радіоконструктор 1999 - 07

  • Схожі статті

Увійти за допомогою:

Випадкові статті

  • 15.10.2014

    На рис. показана схема найпростішого підсилювача НЧ, в якому можна використовувати джерело живлення напругою 4,5 або 9 В. При опорі навантаження 10 Ом та напрузі живлення 4,5 В номінальна вихідна потужність дорівнює 70 ... 80 мВт, а при підвищенні напруги до 9 В 120 ... 150 мВт. У підсилювачі застосовані германієві малопотужні низькочастотні …

  • 20.09.2014

    Відповідно до стандартів IEC на практиці застосовується чотири способи кодування номінальної ємності. 1. Кодування трьома цифрами Перші дві цифри вказують значення ємності в пикофарадах (пф), остання - кількість нулів. Коли конденсатор має ємність менше 10 пФ, остання цифра може бути «9». При ємностях менше 1.0 пф перша …