Детектор фазы схема. Классификация фазовых детекторов

Фазовым детектором (ФД) называется устройство, служащее для создания напряжения, изменяющегося в соответствии с законом изменения фазы входного напряжения. Если на вход ФД действует напряжение

то продетектированное напряжение

Положим, на входе ФД действует напряжение, показанное на рис. 4, а, тогда напряжение на выходе ФД должно иметь вид рис. 4, б.

Рисунок 4 - Входное (а) и выходное (б) напряжения ФД

Рассмотренный случай является типичным для фазового телеграфирования, при котором начальные фазы паузы и посылки отличаются на 180є. При фазовой модуляции (ФМ) фаза плавно изменяется в соответствии с передаваемой информацией. Так как в спектре напряжения на выходе ФД имеются частотные составляющие, которых не было в спектре напряжения, то для реализации ФД нельзя использовать линейную систему с постоянными параметрами. Фазовое детектирование нельзя также осуществить с помощью простой безынерционной нелинейной системы. Например, постоянная составляющая тока диодного детектора зависит только от амплитуды входного напряжения и не зависит от его фазы и частоты. Поэтому ФД можно выполнить на основе линейной системы с переменными параметрами (параметрической системы).

Структурная схема ФД показана на рис. 5. Эта схема совпадает со структурной схемой преобразователя частоты; отличие состоит лишь в том, что частота гетеродина (опорное напряжение) . Под действием опорного напряжения меняется активный параметр схемы, обычно крутизна S.

Рисунок 5 - Структурная схема ФД

Схема ФД совпадает также со схемой параметрического амплитудного детектора (АД), поэтому продетектированное напряжение на выходе ФД

где S 1 - амплитуда первой гармоники крутизны тока преобразовательного элемента;

Фазовое детектирование осуществляется с помощью параметрической цепи, в которой источник опорного напряжения должен быть синхронным с источником сигнала.

В зависимости от вида нелинейной цепи и способа ее включения различают однотактные, балансные и кольцевые ФД. В качестве нелинейного элемента используют диоды и транзисторы. Для нашей системы мы будем использовать однотактный ФД.

Детектор выполнен по однотактной схеме (рис. 6).

Рисунок 6 - Однотактный диодный фазовый детектор

Для осуществления фазового детектирования к диоду прикладывается входной сигнал и опорное напряжение; напряжение на выходе ФД определяется выражением (24), полученным при предположении, что. Характеристика детектирования диодного ФД, согласно (24), близка к косинусоиде.

Принцип действия ФД по схеме рис. 5 можно пояснить, рассматривая его не как параметрическую цепь, а как систему с амплитудным детектированием суммы двух гармонических колебаний (рис. 7, а). На выходе такого амплитудного детектора действует суммарное напряжение

Эти два колебания имеют одинаковую частоту, но разные фазы. В результате векторного сложения двух напряжений (рис 7, б) получают напряжение той же частоты, но другой фазы. Амплитуда суммарного колебания

Рисунок 7 - Система с АД суммы двух гармонических колебаний (а); векторное сложение двух напряжений (б)

Напряжение на выходе АД с коэффициентом передачи

Согласно (27), напряжение на выходе ФД зависит от ц входного сигнала; вид зависимости от ц определяется отношением. В общем случае характеристика детектирования существенно отличается от косинусоиды (рис. 8, а). Если, то

Фазовым детектором (ФД) называют устройство, служащее для создания напряжения, изменяющегося в соответствии с законом изменения фазы входного напряжения.

Если на входе ФД действует напряжение

то продетектированное напряжение .

Положим, на входе ФД действует напряжение (рис.111, а ), тогда напряжение на выходе ФД должно иметь вид рис.111, б .

Рисунок 111 – Графики напряжений на входе и выходе ФД

Рассмотренный случай является типичным для фазового телеграфирования, при котором начальные фазы паузы и посылки отличаются на 180°.

При ФМ фаза плавно изменяется в соответствии с передаваемой информацией. Так как в спектре напряжения на выходе ФД имеются частотные составляющие, которых не было в спектре напряжения , то для реализации ФД нельзя использовать линейную систему с постоянными параметрами.

Фазовое детектирование нельзя также осуществлять с помощью безынерционной нелинейной системы. Например, постоянная составляющая тока диодного детектора зависит только от амплитуды входного напряжения и не зависит от его фазы и частоты. Поэтому ФД можно выполнять на основе линейной системы с переменными параметрами (параметрической системы).

Структурная схема ФД показана на рис.112. Эта схема совпадает со структурной схемой преобразователя частоты; отличие состоит лишь в том, что частота гетеродина (опорное напряжение )

Под действием опорного напряжения меняется активный параметр схемы, обычно крутизна .

Рисунок 112 – Структурная схема ФД

Схема ФД совпадает также со схемой параметрического АД, поэтому продетектированное напряжение на выходе ФД

, (12.1)

где - амплитуда первой гармоники крутизны тока преобразовательного элемента;

В зависимости от вида нелинейной цепи и способа ее включения различают однотактные, балансные и кольцевые ФД.

В качестве нелинейного элемента используют диоды и транзисторы.

Виды фазовых детекторов

Однотактный диодный ФД. Детектор выполнен по однотактной схеме (рис.113).

Рисунок 113 – Однотактный диодный ФД

Для осуществления фазового детектирования к диоду прикладывается входной сигнал и опорное напряжение; напряжение на выходе ФД определяется выражением (12.1), полученным при .

Характеристика детектирования диодного ФД, согласно (12.1), близка к косинусоиде.

Принцип действия ФД по схеме рис.112 можно пояснить, рассматривая его не как параметрическую цепь, а как систему с амплитудным детектированием суммы двух гармонических колебаний () (рис.114, а ).

На входе такого АД действует суммарное напряжение

Рисунок 114 – К вопросу принципа действия ФД

Эти два колебания имеют одинаковую частоту, но разные фазы.

В результате векторного сложения двух напряжений (рис.114, б ) получают напряжение той же частоты, но другой фазы.

Амплитуда суммарного колебания

.

Напряжение на выходе АД с коэффициентом передачи

Согласно (12.2), напряжение на выходе ФД зависит от входного сигнала; вид зависимости от определяется отношением .

В общем случае характеристика детектирования существенно отличается от косинусоиды (рис.115, а ).

Рисунок 115 – Характеристики детектирования ФД

Если , то

Таким образом, при малых амплитудах входного сигнала характеристика детектирования однотактного диодного ФД имеет косинусоидальную форму.

Если , то

в этом случае характеристика детектирования представляет собой циклоиду (рис.115, б ), сильно отличающуюся от косинусоиды.

Балансный ФД. Такой ФД представляет собой два диодных однотактных ФД (рис.116), каждый из которых работает на свою нагрузку.

Рисунок 116 – Балансный ФД

В результате этого на выходе каждого плеча ФД создается напряжение и встречной полярности, поэтому

.

Входное напряжение подводится к диодам в противоположной полярности, поэтому фаза напряжения отличается на 180°.

В параграфе 7.4 были рассмотрены цифровые синтезаторы с косвенным синтезом частоты, одним из главных элементов которых можно назвать фазовый дискриминатор. Аналогичные устройства применяют в любых цифровых системах фазовой автоподстройки частоты, используемых как для синтеза колебаний с постоянной частотой, так и для частотной или фазовой модуляции и демодуляции ВЧ сигналов. Параметры фазового дискриминатора определяют наивысшую рабочую частоту или частоту сравнения петли ФАПЧ, а также такие важнейшие показатели, как ширина полосы захвата и полосы удержания петли ФАПЧ.

В цифровых системах ФАПЧ, в основном, используют следующие виды фазовых дискриминаторов:

· фазовый детектор (ФД) на логическом элементе «Исключающее ИЛИ»;

· фазовый детектор на RS-триггере или JK-триггере;

· цифровой частотно-фазовый детектор (ЧФД).

Первые два типа детекторов характеризуются тем, что на их выходе присутствует постоянное напряжение, пропорциональное сдвигу фаз при равенстве частот входного и опорного сигналов, и биения, частота которых зависит от разности частот этих сигналов, если эти частоты не равны. При этом биения могут иметь в некотором диапазоне расстроек постоянную составляющую, приводящую петлю ФАПЧ в конце концов к захвату частоты входного сигнала, но при достаточно большой частотной расстройке биения становятся практически гармоническими и захват частоты является уже невозможным. Ясно, что при этом полоса захвата системы уже полосы удержания. Рисунок 7.7.1 иллюстрирует процесс захвата частоты системой ФАПЧ с ФД на логическом элементе «Исключающее ИЛИ» (показана зависимость выходного напряжения ФД от времени, полученная путем моделирования работы петли ФАПЧ на ЭВМ). В данном случае начальная расстройка частоты ГУН настолько велика, что биения выходного напряжения ФД являются чисто гармоническими и их постоянная составляющая равна нулю, т.е. ФД не оказывает подстраивающего действия на ГУН (левая часть рисунка). На ГУН подается внешнее управляющее воздействие, медленно сдвигающее его частоту к значению, при котором возможен захват его частоты петлей ФАПЧ; при этом форма биений выходного колебания ФД начинает отличаться от гармонической, появляется постоянная составляющая, оказывающая воздействие на среднее значение частоты ГУН (средняя часть рисунка). В какой-то момент частота ГУН попадает в полосу захвата петли ФАПЧ – и происходит захват: после короткого переходного процесса на выходе ФД устанавливается постоянное напряжение, пропорциональное разности фаз опорного колебания и колебания ГУН, поступающих на ФД (правая часть рисунка).

В отличие от фазовых детекторов, у частотно-фазового детектора при любых частотных расстройках на выходе нет биений, но присутствует постоянное напряжение, подстраивающее регулируемый генератор так, чтобы уменьшить эту расстройку. Таким образом, выходное напряжение ЧФД является функцией как разности фаз (в синхронном режиме), так и разности частот (в случае отсутствия синхронизма) поступающих на него колебаний. Благодаря этому в системе ФАПЧ, содержащей цифровой частотно-фазовый детектор, полоса захвата равна полосе удержания.

На рис.7.7.2 показана структура простейшего цифрового ЧФД, построенного на двух D-триггерах. Состояния их выходов определяют работу транзисторных ключей VT1, VT2 следующим образом.

Q1=1, Q2=1 - элемент «логическое И» DD3 выставляет на своем выходе логическую 1, которая через устройство задержки подается на входы CLR триггеров, сбрасывая их выходы в 0.

Q1=0, Q2=0 - оба ключа разомкнуты, выход ЧФД - в третьем состоянии.

Q1=1, Q2=0 - ключ VT1 замкнут, VT2 разомкнут, на выходе ЧФД напряжение, близкое к напряжению питания, что соответствует логической 1.

Q1=0, Q2=1 - ключ VT1 разомкнут, VT2 замкнут, на выходе ЧФД напряжение, близкое к нулю, что соответствует логическму 0.

Рассмотрим поведение схемы в случае, когда частота сигнала на Входе 1 выше частоты на Входе 2, рис.7.7.3А. Из рисунка видно, что при этом единица на выходе ЧФД будет появляться чаще, чем 0 (триггеры срабатывают по положительному фронту на синхровходе), и частота ГУН будет подтягиваться выше, к частоте опорного генератора (предполагается, что ГУН выполнен с использованием варикапа). Это будет продолжаться до тех пор, пока частоты не станут равными, что приведет к захвату частоты ГУН. В случае, когда в исходном состоянии частота ГУН значительно выше частоты опорного генератора, на выходе ЧФД будет преобладать 0, понижая частоту ГУН вплоть до ее захвата петлей ФАПЧ.

Современные ЧФД выпускаются в виде ИМС, и могут работать на частотах до 200 МГц, что позволяет их использовать в ПЧ трактах радиопередающих устройств современных стандартов связи. Они имеют средства для устранения зоны нечувствительности по фазе, расположенной в центре фазовой характеристики. Примером современной микросхемы ЧФД может послужить AD9901, структура которой представлена на рис. 7.7.4. Принципиально она отличается от рассмотренной выше (рис. 7.7.2) наличием делителей частоты входных сигналов на D-триггерах. Они обеспечивают фазовому дискриминатору, выполненному на элементе «Исключающее ИЛИ», прямоугольные колебания для улучшения его работы, а также сдвигают зону нечувствительности из центра фазовой характеристики на ее края.

Вид характеристики такого ЧФД показан на рис. 7.7.5, где видны зоны нечувствительности и нелинейности в зависимости от рабочей частоты детектора. Отметим, что на частотах в сотни кГц эта характеристика имеет линейный участок протяженностью на все 360°.

Существуют две разновидности ЧФД, различающиеся по способу построения их выходных каскадов: ЧФД с выходом по напряжению (рис. 7.7.4) и ЧФД с выходом по току; последний вариант чаще называют схемой подкачки заряда или «зарядовым насосом» (или СР - charge pump), о применении которого в схеме петли ФАПЧ уже упоминалось в параграфе 7.4. Заменив транзисторы VT1 и VT2 на рис. 7.7.2 на источники тока, как это показано на рис. 7.7.6, получаем схему ЧФД charge pump в обобщенном виде .

От того, какие импульсы – тока или напряжения - вырабатывает схема ЧФД, зависит тип подключаемого к выходу ЧФД петлевого фильтра; соответственно, различаются и характеристики всей петли ФАПЧ. На рис. 7.7.7 приведены часто встречающиеся варианты схем петлевых фильтров для «токового» и «потенциального» вариантов исполнения выходных каскадов ЧФД. Для улучшения фильтрующих свойств петлевого фильтра по отношению к импульсным помехам, проникающим с выхода ЧФД на управляющий вход ГУН, иногда применяют дополнительное фильтрующее звено (ДФЗ), элементы которого выделены на нижней схеме рисунка пунктиром. Операционный усилитель, включенный между петлевым фильтром и управляющим входом ГУН, служит буферным каскадом, уменьшающим нагрузку на фильтр со стороны входа ГУН. Сам операционный усилитель должен иметь при этом минимальный входной ток (пикоамперы) и низкий уровень собственных шумов. Напомним (см. параграф 7.4 и рис. 7.4.3), что токи утечки, возникающие в элементах (емкостях) петлевого фильтра или же ток нагрузки со стороны управляющего входа ГУН приводят к проникновению нежелательных составляющих с частотой сравнения и ее гармоник в спектр колебания ГУН.

Отдельно следует сказать о работе петли ФАПЧ, в которой применяется ЧФД с токовым выходом «charge pump», нагруженным на петлевой фильтр, в состав которого входит идеальное интегрирующее звено. В параграфе 7.4 уже было отмечено, что в этом случае петля ФАПЧ приобретает свойство астатизма, т.е. фазовая ошибка в установившемся синхронном режиме не зависит от начальной частотной расстройки ГУН относительно колебания опорного генератора и, в идеальном случае, всегда стремится к нулю. Покажем это на примере схемы, изображенной на рис. 7.7.6.

Пусть петля ФАПЧ имеет простейшую структуру, подобную изображенной на рис.7.7.3; это не снижает общности наших рассуждений. На Входе 1 ЧФД присутствует колебание опорного генератора с постоянной частотой w ОП = рj ОП (где р = d / dt – оператор дифференцирования, j ОП – линейно возрастающая полная фаза опорного колебания). На Входе 2 ЧФД присутствует, в свою очередь, колебание ГУН с частотой, зависящей от Е УПР (р) - управляющего воздействия ЧФД, передающегося через петлевой фильтр:

w ГУН = рj ГУН = w ГУН СВ. – 2pS ГУН Е УПР (р),

где j ГУН – полная фаза колебания ГУН, w ГУН СВ. – значение частоты ГУН без управляющего воздействия от ЧФД («свободное»), S ГУН – крутизна линейного участка статической модуляционной характеристики ГУН.

В устройствах для приема сигналов с фазовой модуляцией, в системах фазовой автоподстройки частоты, а также в ряде других автоматических устройств необходимо получать напряжение, амплитуда которого определяется сдвигом фаз между двумя колебаниями. Получить такое напряжение можно с помощью фазовых детекторов (ФД).

Как и в других детекторах, важнейшей характеристикой ФД является детекторная характеристика. Она представляет собой зависимость амплитуды выходного напряжения от разности фаз между напряжением сигнала и опорным напряжением. Опорное напряжение имеет частоту, равную частоте сигнала, и постоянную фазу, относительно которой отсчитывается фаза сигнала. Одним из основных требований, предъявляемых к детекторной характеристике, является ее линейность на рабочем участке. Линейность детекторной характеристики необходима для обеспечения минимальных нелинейных искажений, вносимых ФД.

В простейшем ФД напряжение сигнала U c и опорное напряжение U оп последовательно складываются, а сумма напряжений U 𝛴 подается на амплитудный детектор. Как известно, при сложении двух синусоидальных напряжений одинаковой частоты амплитуда суммарного напряжения U 𝛴 зависит от сдвига фаз φ (рисунок 6.3). Другими словами, суммарное напряжение оказывается промодулированным по амплитуде по закону фазовой модуляции сигнала:

где U 𝛴 - амплитуда суммарного напряжения;U оп - амплитуда опорного напряжения; U c - амплитуда сигнала; φ - угол сдвига фаз между сигналом и опорным напряжением, изменяющийся по закону модулирующего сигнала.

Амплитудно-модулированное напряжение обычным образом детектируется амплитудным детектором. Детекторная характеристика будет описываться выражением

где- коэффициент передачи амплитудного детектора.

Возможная схема простейшего ФД представлена на рисунке 2.4. Детекторная характеристика показана на рисунке 2.5.

Как следует из рисунка 2.5, в пределах небольших участков АВ и CD детекторную характеристику можно считать линейной.

Для того чтобы расширить линейный участок зависимости U вых (φ) и сделать ее симметричной относительно отклонения фазы от некоторого начального значения, применяют балансный ФД, схема которого представлена на рисунке 2.6.

Рисунок 2.1 – Сложение двух синусоидальных напряжений одинаковой частоты

Рисунок 2.2 – Схема фазового детектора

Рисунок 2.3 – Детекторная характеристика фазового детектора

Рисунок 2.4 – Схема балансного фазового детектора

Напряжение детектируемого сигнала U c подводится с помощью трансформатора Т к диодам VD1 и VD2 со взаимно противоположными фазами, т. е. напряжения U" c и U" c противофазны. Опорное напряжение U оп подводится к диодам в одинаковой фазе. Как следует из рис. 7.36, балансный ФД представляет собой сочетание двух простейших ФД, показанных на рис. 7.34. Выходные напряженияU" вых иU" вых имеют взаимно противоположные знаки, а общее выходное напряжение равно разности напряжений U" вых иU" вых.



Полагая коэффициенты передачи детекторов на диодах VD1 иVD2 одинаковыми и равными K д, получаем

Характеристика проходит через 0 при φ=90° и φ=270° (рисунок 5.7). Полярность выходного напряжения зависит от знака отклонения фазы φ.

Степень линейности характеристики зависит от соотношения амплитуд напряжений U оп иU c . Наилучшая линейность получается приU оп =U c . В этом случае

Еще меньшие нелинейные искажения можно получить в кольцевом балансном ФД, схема которого показана на рисунке 6.8.

Рисунок 2.5 – Детекторная характеристика балансного фазового детектора

Рисунок 2.6 – Схема кольцевого балансного фазового детектора

Из сравнения схем на рисунке 6.6 и рисунке 6.8 следует, что кольцевой детектор состоит из двух обычных балансных, работающих на общую нагрузку. В кольцевом балансном детекторе токи четных гармоник от каждого из двух балансных детекторов в нагрузке протекают навстречу друг другу и при полной симметрии схемы взаимно компенсируются. За счет этого и достигается меньший уровень нелинейных искажений.

Фа́зовый дете́ктор , фазовый компара́тор (ФД) - электронное устройство, сравнивающее фазы двух входных сигналов равных или близких частот.

На вход ФД подаются два сигнала, фазы которых нужно сравнить, на выходе ФД формируется сигнал, обычно напряжения, пропорциональный разности фаз входных сигналов.

Энциклопедичный YouTube

    1 / 3

    Лекция №4. Балансная и квадратурная модуляция

    Синтезатор сетки частот и его характеристики

    Синтезатор сетки частот с ФАПЧ

    Субтитры

Типы ФД

Исключающее ИЛИ

Простейший ФД - логический элемент ИСКЛЮЧАЮЩЕЕ ИЛИ . При подаче на вход этого элемента двух прямоугольных колебаний равных частот с нулевым фазовым сдвигом его выходное напряжение равно нулю (логический 0). При ненулевом сдвиге фаз на выходе элемента формируются импульсы, среднее значение которых прямо пропорционально фазовому сдвигу и достигает максимума (на выходе логическая 1) при сдвиге равном π. Для усреднения импульсного выходного сигнала на выходе этого фильтра устанавливают фильтр нижних частот (ФНЧ).

Балансный смеситель

Другой тип ФД - это четырёхквадрантные перемножители двух входных сигналов, которые часто называют балансными смесителями. На выходе балансного смесителя присутствуют удвоенная частота входных сигналов и постоянная составляющая, пропорциональная разности фаз, что следует из выражения:

sin ⁡ α cos ⁡ β = sin ⁡ (α − β) 2 + sin ⁡ (α + β) 2 ≈ α − β 2 + sin ⁡ (α + β) 2 {\displaystyle \sin \alpha \cos \beta ={\sin(\alpha -\beta) \over 2}+{\sin(\alpha +\beta) \over 2}\approx {\alpha -\beta \over 2}+{\sin(\alpha +\beta) \over 2}}

Синус малого угла здесь приближённо заменён самим углом. Составляющая с удвоенной частотой может быть легко отфильтрована с помощью ФНЧ.

Схемотехнически балансные смесители обычно строятся по схеме Гилберта .

ФД, срабатывающие по фронтам входных сигналов

ФД этого типа чувствительны к относительному положению фронтов входных сигналов. Например, если сигнал А опережает сигнал Б, то на выходе этого ФД формируются импульсы положительной полярности с длительностью пропорциональной разности фаз и с частотой повторения равной частоте входных сигналов. Если сигнал Б опережает сигнал А, то на выходе формируются импульсы отрицательной полярности. Для получения выходного напряжения, пропорционального разности фаз на выходе ФД применяют ФНЧ.

Применение ФД

Традиционное применение ФД - в следящих системах автоподстройки частоты , где ФД, совместно с генератором переменной частоты, управляемый напряжением (ГУН) включены в контур отрицательной обратной связи. Сигналом задания для этой системы автоматического регулирования является частота входного сигнала, а ФД является сравнивающим устройством. В передаточную функцию ФНЧ, установленном на выходе ФД перед ГУН, дополнительно вводят ноль, для обеспечения запаса устойчивости по фазе. В простейшем случае, если ФНЧ является RC-фильтром НЧ, то ноль в передаточной функции можно получить включив резистор с нужным сопротивлением последовательно с конденсатором фильтра.

Также ФД используются в синтезаторах, умножителях и делителях частот. В этих системах на вход ФД подаются не сами сигналы, а сигналы, полученные в результате умножения, деления, сумм и разностей нужных частот.

В радиосвязи ФД применяется в системах автоподстройки частоты гетеродина в супергетеродинных радиоприёмников .

В телефонии ФД применяется в устройствах декодирования тонального вызова.

При стабилизации частоты вращения шпинделей и валов на один из входов ФД подаётся сигнал от опорного генератора, на второй - импульсы от меток частотного датчика оборотов, и выходной сигнал ФД управляет не ГУН, а электрическим приводом вала.