Мифы о соединении алюминия и меди. Как соединять медные и алюминиевые провода?

Правильное соединение проводов – это залог безопасности в вашей квартире. Пожары по причине неисправной электропроводки возникают довольно часто, для того, что бы этого избежать, читаем данную статью о соединении электропроводов.

Прежде всего, запомните основное правило, никогда не соединяйте напрямую медные и алюминиевые провода . Не буду вдаваться в подробности, скажу только одно, по истечении короткого промежутка времени происходит химическая реакция, и место соединения разрушается. При окислении проводов контакт ослабевает и вполне вероятен риск пожара, да и электричество может пропасть во всей квартире.



Для того, что бы соединить медь и алюминий существует несколько способов.

Клеммник – устройство, которое состоит из трубки, двух винтов, и пластмассовой изоляции. Вставляете с одной стороны медный провод с другой алюминиевый и зажимаете винтами. При выборе клеммника учитывайте сечение соединяемых проводов.



Если клеммник будет слишком большой, то провода не зажмутся как надо, если клемник будет по диаметру меньше кабеля, то тоже ничего не получиться.

Недостатки соединения через клеммник , это возможность покупки некачественного китайского клеммника трубка которого, при затягивании винтом, трескает, так что будьте внимательны.



Еще при соединении при помощи клеммника винты со временем ослабевают и их необходимо подтягивать, а это уже существенный недостаток.

На мой взгляд, при соединении меди и алюминия лучше всего использовать обыкновенный болтик с тремя шайбами, это старый дедовский способ который никогда не подведет. Делаем на проводах кольца, между этими кольцами ставим шайбу, со стороны гайки и головки ставим еще по шайбе и затягиваем всё это дело по самое не могу. После того как затяните, не забудьте тщательно заизолировать соединяемое место.

Многие из нас знают, что нельзя напрямую соединять медные и алюминиевые провода. Существует несколько ответов на данный вопрос.

Миф №1. У алюминия и меди разный коэффициент теплового расширения. Когда через них проходит ток, они расширяются по-разному, когда ток прекращается, они остывают по-разному. В итоге серия расширений-сужений изменяет геометрию проводников, и контакт становится неплотным. А дальше уже в месте плохого контакта возникает нагрев, он ухудшается еще больше, появляется электрическая дуга, которая и довершает все это дело.

Такое мнение представляется несостоятельным по причине того, что линейный коэффициент теплового расширения для металлов, применяемых для электромонтажа: медь - 16,6*10-6м/(м*гр. Цельсия); алюминий - 22,2*10-6м/(м*гр. Цельсия); сталь - 10,8*10-6м/(м*гр. Цельсия). Однако, различия в линейном тепловом расширении относительно легко компенсируются применением надежных зажимов, создающих постоянное давление на контакт. Расширяться металлам, сжатым при помощи хорошо затянутого болтового соединения, остается только в сторону, а перепады температуры не способны серьезно ослабить контакт.

Миф №2. Алюминий образует на своей поверхности окисную непроводящую пленку, которая с самого начала ухудшает контакт, а дальше процесс идет по той же нарастающей: нагрев, дальнейшее ухудшение контакта, дуга и разрушение. Этот вариант тоже не совсем верен, так как оксидная пленка позволяет соединять алюминиевые проводники со сталью и с другими алюминиевыми проводниками.

Миф №3. Алюминий и медь образуют «гальваническую пару», которая просто не может не перегреваться в месте контакта. И снова нагрев, дуга и так далее. Однако, медный проводник тоже достаточно быстро покрывается окисью с той лишь разницей, что окись меди более-менее проводит ток. Если соединены медный и алюминиевый проводник, их окиси имеют возможность распада на заряженные ионы. Ионы окиси алюминия и меди, будучи частицами с разным электрическим потенциалом, начинают принимать участие в процессе течения тока. Начинается процесс, известный как «электролиз». В ходе электролиза ионы переносят заряды и перемещаются сами. При их перемещениях металл разрушается, образуются раковины и пустоты. Особенно это касается алюминия. Ну, а там где есть пустоты и раковины, там уже нельзя иметь надежный электрический контакт. Плохой контакт начинает греться, становится еще хуже и так далее вплоть до возгорания.



Особенно опасным является соединение медного и алюминиевого провода на улице. Под влиянием естественной влажности и прохождения через соединение электрического тока происходит процесс электролиза и на улице процесс разрушения контакта значительно ускоряется. В результате в месте соединения образуются раковины, происходит нагрев и искрение контактов, обугливание изоляции.

Как правильно соединять медные и алюминиевые проводники. Что же делать когда соединять разнородные металлы действительно нужно? Остается только два пути: соединять через другой металл или устранять образование разрушающей оксидной пленки. В первом случае используются самые различные соединители: клеммные колодки без непосредственного соприкосновения разнородных проводников, защитный слой из третьего металла, шайбы, специальные наконечники.

Для соединения меди и алюминия используются специальные пасты, которые и защищают контакт от окисления и попадания влаги, препятствуют последующему разрушению контакта. Если для дружбы этих двух металлов нужен третий, то можно один из них залудить. Например луженый медный многожильный провод прекрасно выполнит поставленную задачу при соединении с одножильным алюминиевым.



Для конкретной задачи подключения к алюминиевому стояку в подъездном щитке используются ответвительные зажимы (сжимы) с проколами или без. В них есть промежуточная пластина исключающая непосредственный контакт. Есть экземпляры как с пастой, так и без нее. Для более бытовых задач можно использовать клеммные колодки с перегородками или разными гнездами для проводников из меди и алюминия. Можно даже использовать обычное болтовое соединение, главное не забыть проложить между медным и алюминиевым проводом шайбу, оцинкованную или из нержавейки.



В большинстве новостроек электрическую разводку изначально делают из медных проводов. Это диктуют возросшие нагрузки на сеть, вызванные большим количеством электроприборов. Кроме этого, медь более долговечна, не окисляется и имеет лучшие показатели электропроводимости.

Но в старых домах повсеместно проложена алюминиевая проводка. Многие люди, планируя капитальный ремонт, меняют алюминиевые провода на медь. Однако далеко не у всех есть такая возможность. Кроме того, иногда замена невозможна по техническим причинам.

Что следует знать

В этих случаях приходится соединять алюминиевые и жилы из меди между собой. Но такое соединение простой скруткой выполнять запрещено: между проводами начинается электрохимическая коррозия, вызванная естественной влажностью, такой контакт быстро разрушается. Лучше всего соединять провода из одного материала.

Но соединение медных и алюминиевых проводников довольно распространенное явление. Для этого можно использовать различные способы, которые отлично себя зарекомендовали на практике. Наиболее применяемые варианты для выполнения такого соединения и представлены ниже.

Способы для надежного соединения разных проводов

Соединить алюминий и медь в электропроводке можно несколькими способами. Основная задача всех этих методов: обеспечить надежность и долговечность контакта, минимизировав при этом возможность электрохимической коррозии.

Винтовое соединение

Винтовой способ соединения алюминиевых и медных жил проводов отличается простотой, являясь при этом надежным и долговечным. Этот вариант можно использовать в том случае, если необходимо соединить провода разного или большого сечения. Суть и технология этого метода заключается в следующем:

  • Концы обоих проводов очищаются от изоляции (примерно на 30 мм);
  • При помощи круглогубцев концы загибаются в окружность.

Затем берется болт подходящего размера и диаметра. Сборка конструкции производится в таком порядке:

  1. На болт одевается обычная шайба;
  2. Окружность первого проводника;
  3. Опять шайба;
  4. Кольцо второго провода;
  5. Еще одна шайба;
  6. Конструкция зажимается при помощи гайки;

Одно из преимуществ такого метода – возможность соединения более двух проводов. Максимальное количество зажимаемых жил ограничивается только длиной болта.

Выполняя такое соединение, не забывайте между проводами подкладывать шайбы: нельзя допускать, чтобы медь контактировала с алюминиевыми жилами.

Скрутка проводов

Этот способ также широко применяется на практике, но требует особого подхода. Чтобы скрутка медных и алюминиевых жил была долговечной, а между ними не образовывалась коррозия, лучше поступить следующим образом:

  • Жилы зачищаются от изоляции (не менее 4 см);
  • Медный провод требуется залудить при помощи оловянного припоя;
  • После этого производится обычная скрутка токоведущих жил между собой;
  • Для повышения защищенности такого соединения от влаги, его можно обработать специальным термостойким лаком;
  • После высыхания лака, скрутка надежно изолируется и готова к эксплуатации.

Скрутка должна производиться таким образом, чтобы жилы перекручивались между собой. Обвивание одного провода вокруг другого недопустимо!

Клеммные колодки

Использование винтовых колодок очень популярно и широко применяется на практике. Такой способ лучше всего зарекомендовал себя в электрощитах, где есть необходимость соединения большого количества проводов. Также колодки применяются в распределительных коробках, обеспечивая разборные контакты, что облегчает ревизию и ремонт в случае необходимости.

Рассмотрим порядок работ при выборе этого метода, чтобы соединить медь и алюминий:

  • Как обычно, концы проводов нужно зачистить. Изоляция снимается примерно на 0,5–1 см;
  • После этого зачищенные концы вставляются в клеммы и зажимаются винтами со средним усилием, чтобы не поломать жилы.

Совет! Перед тем как зажимать одножильные провода винтами, их лучше немного расплющить молотком или плоскогубцами. Это нужно для увеличения площади контакта.

Этот метод применим как для колодок из черного пластика, так и для клемм, с более тонкой изоляцией из белого пластика. На вопрос, какая колодка лучше, есть мнение, что белые клеммники менее надежны (в механическом исполнении). Поэтому они чаще используются как переходник для подключения светильников, люстр и других маломощных потребителей.

Отдельно отметим, что скрыть клеммы под штукатуркой можно лишь в том случае, если они заключены в распределительную коробку.

Зажимы и клеммники WAGO

Более современный вариант колодки оснащен зажимом немецкого производителя WAGO. Такие клеммы выпускаются двух видов:

  1. Неразъемные колодки имеют литой, часто прозрачный корпус. Для фиксации жил достаточно вставить очищенные концы проводов в такой колпачок, зажим надежно их зафиксирует. Минусом этого метода является его одноразовость: чтобы переделать соединения, потребуется откусить старые зажимы;
  2. Разъемные клеммники лишены этого недостатка. Специальный рычажок позволяет легко фиксировать провода, а при необходимости разобрать соединение, достаточно поднять его вверх, зажимы разожмутся и концы выйдут из клеммы.

При помощи таких зажимов можно выполнять многожильное (от 2 до 8) соединение, а также использовать клеммник как переходник для ответвления в электропроводке. Еще одно преимущество данного способа соединить медь и алюминий – это отсутствие необходимости дополнительной изоляции контактов. Корпус колодок WAGO полностью изолирован и надежен.

Неразъемные соединения

Напоследок рассмотрим еще один способ, как соединить медь с алюминиевыми проводами. Для этого потребуется специальный заклепочный инструмент. Сейчас такие устройства пользуются широкой популярностью, и есть уже у многих мастеров.

Технология этого метода похожа на способ с применением болта и гайки. Рассмотрим, как используя заклепочный инструмент, можно выполнить надежное соединение электрических проводов:

  • Зачистив жилы от изоляции, концы круглогубцами сворачиваются в небольшое колечко. Важно, чтобы диаметр был как можно меньше, чтобы заклепка не болталась слишком свободно;
  • Затем происходит сборка конструкции в таком же порядке, как и при винтовом методе: на шпильку одеваются медный и алюминиевый проводники, в качестве прокладки используется небольшая шайба;
  • После этого стержень заклепки помещается в головку устройства, ручки которого сжимаются до щелчка. Соединение готово!

Минусом этого метода является невозможность разобрать конструкцию. При необходимости подсоединить еще один провод, заклепку придется вырезать и производить соединение заново. Также не следует забывать о важности изолирования этого участка: можно использовать кембрики или изоляционную ленту.

Подводим итоги

Мы изучили самые распространенные и применяемые жил из различных материалов: меди и алюминия. Они отличаются надежностью, обеспечивают долговечный контакт и исключают окисление которое приводит к электрохимической коррозии.

То, что в электротехнике нельзя напрямую соединять медные и алюминиевые проводники , не является секретом даже для многих обывателей, не имеющих никакого отношения к электрике. Со стороны тех же обывателей в адрес электриков-профессионалов часто звучит вопрос: «А почему?».

Почемучки любого возраста способны загнать в тупик кого угодно. Вот и здесь подобный случай. Типичный ответ профессионала: «Почему-почему… Потому что гореть будет. Особенно, если ток большой». Но это не всегда помогает. Так как вслед за этим часто следует другой вопрос: «А почему будет гореть? Почему медь со сталью не горит, алюминий со сталью не горит, а алюминий с медью - горит?»

На последний вопрос можно услышать разные ответы. Вот часть из них:

1) У алюминия и меди разный коэффициент теплового расширения. Когда через них проходит ток, они расширяются по-разному, когда ток прекращается, они остывают по-разному. В итоге серия расширений-сужений изменяет геометрию проводников, и контакт становится неплотным. А дальше уже в месте возникает нагрев, он ухудшается еще больше, появляется электрическая дуга, которая и довершает все это дело.

2) Алюминий образует на своей поверхности окисную непроводящую пленку, которая с самого начала ухудшает контакт, а дальше процесс идет по той же нарастающей: нагрев, дальнейшее ухудшение контакта, дуга и разрушение.

3) Алюминий и медь образуют «гальваническую пару», которая просто не может не перегреваться в месте контакта. И снова нагрев, дуга и так далее.

Где же правда, в конце-то концов? Что же там происходит, в месте соединения меди и алюминия?

Первый из приведенных ответов все-таки несостоятелен. Вот табличные данные по линейному коэффициенту теплового расширения для металлов, применяемых для электромонтажа: медь - 16,6*10-6м/(м*гр. Цельсия); алюминий - 22,2*10-6м/(м*гр. Цельсия); сталь - 10,8*10-6м/(м*гр. Цельсия).

Очевидно, что если бы дело было в коэффициентах расширения, то самый ненадежный контакт был бы между стальным и алюминиевым проводником, ведь их коэффициенты расширения отличаются в два раза.

Но и без табличных данных ясно, что различия в линейном тепловом расширении относительно легко компенсируются применением надежных зажимов, создающих постоянное давление на контакт. Расширяться металлам, сжатым, например, при помощи хорошо затянутого болтового соединения, остается только в сторону, а перепады температуры не способны серьезно ослабить контакт.

Вариант с оксидной пленкой тоже не совсем верен. Ведь эта же самая оксидная пленка позволяет соединять алюминиевые проводники со сталью и с другими алюминиевыми проводниками. Да, конечно, рекомендуется применение специальной смазки против окислов, да, рекомендуется систематическая ревизия соединений с участием алюминия. Но ведь все это допускается и работает годами.

А вот версия с гальванической парой действительно имеет право на существование. Но здесь все-таки не обходится без окислов. Ведь медный проводник тоже достаточно быстро покрывается окислом с той лишь разницей, что окисел меди более-менее проводит ток.

В ходе электролиза ионы переносят заряды и перемещаются сами. Но, кроме того, ионы - это ведь частицы металлов проводников. При их перемещениях металл разрушается, образуются раковины и пустоты. Особенно это касается алюминия. Ну, а там где есть пустоты и раковины, там уже нельзя иметь надежный электрический контакт. Плохой контакт начинает греться, становится еще хуже и так далее вплоть до возгорания.

Отметим, что чем влажнее окружающий воздух, тем более интенсивно протекают все перечисленные процессы. А неравномерное тепловое расширение и непроводящий слой окисла алюминия - это лишь отягчающие факторы, не более того.

О том что в электропроводке нельзя соединять медные и алюминиевые провода , знают даже многие обыватели, не говоря уже о профессиональных электриках. В данной статье мы попытаемся ответить на вопрос: "А почему это нельзя делать?". Казалось бы, по старым нормам и правилам в электрической проводке применялись как медные, так и алюминиевые провода. Они могли свободно существовать даже в одной проводке! Существовать могли (отдельные линии), но соединяться нет! Если же они соединялись, то приходилось постоянно контролировать места соединения. Иначе - нагрев и возгорание!

По этому поводу возникает закономерный вопрос: «А почему происходит возгорание? Почему медь со сталью не горит, алюминий со сталью не горит, а алюминий с медью - горит?!»


На последний вопрос можно услышать разные ответы. Вот часть из них:

У алюминия и меди разный коэффициент теплового расширения. Когда через них проходит ток, они расширяются по-разному, когда ток прекращается, они остывают по-разному. В итоге серия расширений-сужений изменяет геометрию проводников, и контакт становится неплотным. А дальше уже в месте плохого контакта возникает нагрев, он ухудшается еще больше, появляется электрическая дуга, которая и довершает все это дело.

Алюминий образует на своей поверхности окисную непроводящую пленку, которая с самого начала ухудшает контакт, а дальше процесс идет по той же нарастающей: нагрев, дальнейшее ухудшение контакта, дуга и разрушение.

Алюминий и медь образуют «гальваническую пару», которая просто не может не перегреваться в месте контакта. И снова нагрев, дуга и так далее.


Где правда и что действительно происходит в местах соединения меди и алюминия?

Первый из приведенных ответов все-таки несостоятелен. Вот табличные данные по линейному коэффициенту теплового расширения для металлов, применяемых для электромонтажа: медь - 16,6*10-6м/(м*гр. Цельсия); алюминий - 22,2*10-6м/(м*гр. Цельсия); сталь - 10,8*10-6м/(м*гр. Цельсия).

Очевидно, что если бы дело было в коэффициентах расширения, то самый ненадежный контакт был бы между стальным и алюминиевым проводником, ведь их коэффициенты расширения отличаются в два раза.

Но и без табличных данных ясно, что различия в линейном тепловом расширении относительно легко компенсируются применением надежных зажимов, создающих постоянное давление на контакт. Расширяться металлам, сжатым, например, при помощи хорошо затянутого болтового соединения, остается только в сторону, а перепады температуры не способны серьезно ослабить контакт.

Вариант с оксидной пленкой тоже не совсем верен. Ведь эта же самая оксидная пленка позволяет соединять алюминиевые проводники со сталью и с другими алюминиевыми проводниками. Да, конечно, рекомендуется применение специальной смазки против окислов, да, рекомендуется систематическая ревизия соединений с участием алюминия. Но ведь все это допускается и работает годами.

А вот версия с гальванической парой действительно имеет право на существование. Но здесь все-таки не обходится без окислов. Ведь медный проводник тоже достаточно быстро покрывается окислом с той лишь разницей, что окисел меди более-менее проводит ток.

Но если соединены медный и алюминиевый проводник, их окислы имеют возможность диссоциации, то есть распада на заряженные ионы. Диссоциация возможна благодаря естественной влаге, которая всегда есть в воздухе. Ионы окислов алюминия и меди, будучи частицами с разным электрическим потенциалом, начинают принимать участие в процессе течения тока. Начинается процесс, известный как «электролиз».

В ходе электролиза ионы переносят заряды и перемещаются сами. Но, кроме того, ионы - это ведь частицы металлов проводников. При их перемещениях металл разрушается, образуются раковины и пустоты. Особенно это касается алюминия. Ну, а там где есть пустоты и раковины, там уже нельзя иметь надежный электрический контакт. Плохой контакт начинает греться, становится еще хуже и так далее вплоть до возгорания.

Отметим, что чем выше влажность окружающей среды, тем более интенсивно протекают все перечисленные процессы. А неравномерное тепловое расширение и не проводящий слой окисла алюминия - это лишь отягчающие факторы, не более того.