Конденсаторный блок питания на 12 вольт схема. Бестрансформаторный блок питания светодиодной ленты

Расчет онлайн гасящего конденсатора бестрансформаторного источника питания (10+)

Бестрансформаторные источники питания - Расчет онлайн гасящего конденсатора бестрансформаторного источника питания

Но схема (A1) работать не будет, так как в ней через конденсатор проходит ток только в одну сторону. Он быстро зарядит конденсатор. После этого напряжение на схему подаваться уже не будет. Нужно, чтобы конденсатор, зарядившись в одном полупериоде, мог разрядиться в другом. Для этого в схеме (A2) введен второй диод.

Сетевое напряжение подводится между выводом, помеченным 220V и общим проводом. Резистор R2 нужен для ограничения скачка тока. Когда схема работает в стационарном режиме при сетевом напряжении хорошего качества, никаких скачков тока не бывает. Но в момент включения мы можем попасть не на нулевое значение входного напряжения (что было бы оптимальным), а на любое, вплоть до амплитудного. Конденсатор при этом разряжен, так что низковольтная часть окажется подключенной напрямую к 310V амплитуды сетевого напряжения. Нужно, чтобы в этот момент диоды не сгорели. Для этого:

[Сопротивление резистора R2, Ом ] = 310 / [Максимально допустимый одноразовый импульс тока через диод, А ]

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Добрый вечер. Как ни старался, не смог по приведенным формулам для рис 1.2 пол учить значения ёмкостей конденсаторов С1 и С2 при приведенных значениях данных в вашей таблице (Uвх~220V, Uвых 15V, Iвых 100мА, f 50Hz). У меня проблема, включить катушку малогабаритного реле постоянного тока на рабочее напряжение -25V в сеть ~220V, рабочий ток катушки I= 35мА. Возможно я что то не
Схема генератора и регулируемым коэффициентом заполнения импульсов, управляемого...

Операционные усилители К544УД1, К544УД1A, К544УД1Б, 544УД1, 544УД1A, 5...
Характеристики и применение операционных усилителей 544УД1. Распиновка...

Сверхмощный импульсный усилитель звука. Площади. Вещательный. Звуковой...
Сверхмощный импульсный усилитель звука для озвучивания массовых мероприятий и пр...

Параметрический параллельный стабилизатор напряжения. Схема, конструкц...
Расчет и проектирование параллельного стабилизатора. Особенности применения. ...


Бестрансформаторные источники питания проще в изготовлении и дешевле, чем трансформаторные, однако они представляют определённую опасность для жизни человека при налаживании, ремонте и в эксплуатации. Неосторожное прикосновение одновременно ктоковедущей части и к заземлённой поверхности может окончиться весьма плачевно.

Схемы без гальванической развязки применяют в тех конструкциях, где не требуется постоянное присутствие человека или обеспечена надёжная изоляция от поражения током. Стоит отметить, что использовать такие источники питания целесообразно только при небольших токах нагрузки, так как в противном случае размеры и стоимость нужных компонентов растут очень быстро.

Различают следующие разновидности бестрансформаторных блоков питания:

  • с балластным резистором во входной цепи;
  • с балластным конденсатором во входной цепи;
  • с импульсным неизолированным AC/DC-преобразователем.

Балластными резисторами и конденсаторами гасится излишек сетевого напряжения. Соответственно резисторы должны быть рассчитаны на большую мощность рассеяния, а конденсаторы должны быть плёночными, например, К73-17, желательно с рабочим напряжением не менее 630 В. Запас нужен, потому что допустимое переменное напряжение КАС на частоте 50 Гц у данного класса конденсаторов значительно меньше допустимого постоянного напряжения KDC (Табл. 6.2).

Схемы балластного типа «не любят» частых включений/выключений, поскольку в начальный момент времени возникают всплески напряжения. Если имеется возможность, то лучше вообще обойтись без сетевого тумблера, что значительно продлит ресурс работы устройства. Оптимальная сфера применения балластных схем — маломощные приборы с круглосуточным режимом функционирования.

Импульсные сетевые бестрансформаторные преобразователи напряжения носят название AC/DC («переменное» АС в «постоянное» DC). Они обеспечивают высокий КПД и малые габариты, но генерируют импульсные помехи достаточно высокой частоты и амплитуды. Кроме того, микросхемы, применяемые в этих преобразователях, к числу дешёвых и широкораспространённых не относятся.

На Рис. 6.3, а...м показаны схемы бестрансформаторного питания с балластными резисторами и конденсаторами, а на Рис. 6.4, а...г — с микросхемами импульсных AC/DC-преобразователей.


Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (начало):

а) диоды VD1...VD4 должны выдерживать обратное напряжение не менее 400 В. Резисторы Rl, R2 являются балластными для стабилитрона VD5. Сопротивление резистора R3 выбирается так, чтобы выходное напряжение не превышало +5.25 В при любом токе нагрузки. ФНЧ на элементах C1, R3, С2 сглаживает сетевые пульсации удвоенной частоты 100 Гц;

б) аналогично Рис. 6.3, а, но параллельные балластные резисторы заменяются последовательно включёнными резисторами RL..R3, RС-фильтр заменяется LC-фильтром LI, C1, а также добавляется предохранитель FUI. Максимально допустимый ток через дроссель LI должен быть с запасом больше, чем ток нагрузки;

в) полная классическая схема источника питания с балластным конденсатором C1. Резистор R1 ограничивает начальный ток заряда конденсатора С2 и является обязательным в подобных схемах. Резистор R2 быстро разряжает конденсатор C1 после отключения вилки от сети 220 В. Сборка диодов VD1 выпрямляет напряжение и может быть заменена двумя диодами типа 1 N4004... 1 N4007. Конденсатор С2 сглаживает сетевые пульсации, а конденсатор СЗ устраняет ВЧ-помехи. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

г) питание от трёхфазной сети через балластные резисторы RL..R3. Стабилитрон VD4 нужен, чтобы микросхема DA1 не вышла из строя от высокого входного напряжения при обрыве нагрузки в цепи +5 В или при резком снижении тока потребления;


Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (продолжение):

д) стабилитроны VD3, VD4 имеют повышенную мощность рассеяния 1...3 Вт и выполняют предварительное ограничение напряжения. Стабилизатор на микросхеме DA I обеспечивает выходное напряжение;

е) двухполупериодный выпрямитель с диодным мостом VD1 и светодиодной индикацией наличия питания. Резистор R3 определяет ток в нагрузке, а также яркость свечения индикатора HLI. Выходное напряжение зависит от параметров стабилитрона VD2 и тока нагрузки;

ж) двухполярный источник питания. Для полной симметрии схемы желательно обеспечить одинаковые токовые нагрузки по цепям +5 и -5 В;

з) разделение выходного напряжения на две отдельные ветви для исключения взаимных помех, например, для питания МК и для управление тиристором. Стабилитрон VD1 ограничивает напряжение на уровне +5.6 В. Диоды VD2, VD3 снижают его до +4.8...+5 В в каждом канале;


Рис. 6.3. Схемы бестрансформаторного питания с балластными элементами (окончание):

и) получение двух напряжений от одного источника питания. Суммарный ток нагрузки состоит из суммы токов в каналах +9...+12 В и +5 В. При значительных колебаниях тока нагрузки следует выбрать стабилитрон VD3 с повышенной мощностью рассеяния 1...3 Вт;

к) стабилитроны VDI, VD2 одновременно служат стабилизаторами и выпрямителями. Стабилитроны следует выбирать мощные, с запасом по току;

л) вместо одного применяются два балластных конденсатора C1, С2, которые могут быть рассчитаны на меньшее допустимое напряжение;

м) в закрытом состоянии тиристора VS1 ток на бестрансформаторный стабилизатор напряжения (C1...CJ, RL..R3, VDI, VD2) проходит через нагрузку RH. Ввиду низкого значения тока, нагрузка не работает в полную мощность, например, лампа не светится, вентилятор не крутится и т.д. После включения тиристора VSI, в нагрузку RH подаётся полная мощность, а напряжение на выходе стабилизатора снижается с +5 до +2.7 В. Чтобы МК нормально функционировал, он должен быть широкодиапазонным по питанию и иметь возможность организации рестарта.



Рис. 6.4. Схемы сетевых бестрансформаторных блоков питаь с AC/DC-преобразователями:

а) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы ROHM;

б) типовая схема включения импульсного AC/DC-преобразователя напряжения на микросхеме DA1 фирмы Power Integrations. Дроссели LI, L2снижают уровень пульсаций;

в) формирователь двух популярных у радиолюбителей напряжений питания +5 и +3.3 В. Микросхема DA1 — это импульсный АC1DC-преобразователь напряжения фирмы Supertex;

т) DAI — это импульсный АC1DC-преобразователь напряжения фирмы Supertex. Общий ток нагрузки по выходам +18 и +5 В не должен превышать 40 мА.

Бестрансформаторные маломощные сетевые блоки питания с гасящие конденсатором получили широкое распространение в радиолюбительских конструкциях благодаря простоте своей конструкции, несмотря на такой серьезный недостаток, как наличие гальванической связи блока питания с сетью.

Входная часть блока питания (рис. 6.2) содержит балластный кон-денсатор С1 и мостовой выпрямитель из диодов VD1, VD2 и ста-билитронов VD3, VD4. Для ограничения броска тока через диоды и стабилитроны моста в момент включения в сеть последовательно с балластным конденсатором следует включить токоограничивающий резистор сопротивлением 50... 100 Ом, а для разрядки конденсатора после отключения блока от сети, параллельно ему — резистор со-противлением 150...300 кОм. К выходу блока подключают оксидный конденсатор фильтра емкостью 2000 мкФ на номинальное напря-жение не менее 10 В. В результате получаются функционально законченные блоки питания.
При использовании мощных стабилитронов (Д815А... Д817Г), их можно установить на общий радиатор, если в обозначении их типа присутствуют буквы ПП (стабилитроны Д815АПП...Д817ГПП имеют обратную полярность выводов). В противном случае диоды и стабилитроны необходимо поменять местами. Гальваническая связь сети с выходом блока питания, а значит, и с питаемой аппаратурой, создает реальную опасность поражения электрическим током. Об этом следует помнить при конструировании и налаживании блоков с конденсаторно-стабилитронным выпрямителем.

Несмотря на то, что теоретически конденсаторы в цепи перемен-ного тока мощности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла. Проверить заранее пригодность конденсатора для использования в источнике можно, просто подключив его к электросети и оценив темпера-туру корпуса через полчаса. Если конденсатор успевает заметно разогреться, его следует счесть непригодным для использования в источнике. Практически не нагреваются специальные конденса-торы для промышленных электроустановок — они рассчитаны на большую реактивную мощность. Такие конденсаторы используют в люминесцентных светильниках , в пускорегулирующих устройствах асинхронных электродвигателей и т.п.



Ниже представлены две практические схемы источников питания с конденсаторным делителем: пятивольтовый общего назначения на ток нагрузки до 0,3 А (рис. 6.3) и источник бесперебойного питания для кварцованных электронно-механических часов (рис. 6.4). Дели-тель напряжения пятивольтового источника состоит из бумажного конденсатора С1 и двух оксидных С2 и СЗ, образующих нижнее по схеме неполярное плечо емкостью 100 мкФ. Поляризующими диодами для оксидной пары служат левые по схеме диоды моста. При номиналах элементов, указанных на схеме, ток короткого замыкания на выходе блока питания равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки — 27 В.


Широко распостраненные электронно-механические часы-будиль-ники китайского производства обычно питают от одного гальва-нического элемента напряжением 1,5 В. Предлагаемый источник вырабатывает напряжение 1,4 В при среднем токе нагрузки 1 мА.
Напряжение, снятое с делителя CI, С2, выпрямляет узел на эле-ментах VD1, VD2. СЗ. Без нагрузки напряжение на конденсаторе СЗ не превышает 12 В.

Предлагаемый вашему вниманию бестрансформаторный конден-саторный выпрямитель работает с автостабилизацией выходного напряжения во всех возможных режимах работы (от холостого хода до номинальной нагрузки). Это достигнуто за счет карди-нального изменения принципа формирования выходного напря-жения — не за счет падения напряжения от импульсов тока выпрямленных полуволн сетевого напряжения на сопротивлении стабилитрона, как в других подобных устройствах, а за счет из-менения времени подключения диодного моста к накопительному конденсатору.
Схема стабилизированного конденсаторного выпрямителя приве-дена на рис. 6.12. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме. База ключево-го транзистора VT1 через пороговый элемент (стабилитрон VD3) соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1. Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает известным образом. При увеличении напряжения на С2 и откры-вании VD3 транзистор VT1 также отрывается и шунтирует выход выпрямительного моста. Вследствие этого напряжение на выходе моста скачкообразно уменьшается практически до нуля, что при-водит к уменьшению напряжения на С2 и последующему выклю-чению стабилитрона и ключевого транзистора.


Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и транзистора и т.д. Процесс автостабилизации выходного напряжения очень похож на функ-ционирование импульсного стабилизатора напряжения с широтно-импульсным регулированием. Только в предлагаемом устройстве частота следования импульсов равна частоте пульсации напряже-ния на С2. Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например, составной КТ972А, КТ829А, КТ827А и др. Увеличить выходное напряжение выпрямителя можно, применив более высоковольтный стабилитрон или два низковольтных, соединенных последователь-но. При двух стабилитронах Д814В и Д814Д и емкости конденсатора С1 2 мкФ выходное напряжение на нагрузке сопротивлени-ем 250 Ом может составлять 23...24 В. По предложенной методике можно застабилизировать выходное напряжение одно-полупериодного диодно-конденсаторного выпрямителя, выпол-ненного, например, по схеме рис. 6.13. Для выпрямителя с плю-совым выходным напряжением параллельно диоду VD1 включен n-p-п транзистор КТ972А или КТ829А, управляемый с выхода выпрямителя через стабилитрон VD3. При достижении на кон-денсаторе С2 напряжения, соответствующего моменту открывания стабилитрона, транзистор VT1 тоже открывается. В результате амплитуда положительной полуволны напряжения, поступающе-го на С2 через диод VD2, уменьшается почти до нуля. При умень-шении же напряжения на С2 транзистор VT1, благодаря стаби-литрону, закрывается, что приводит к увеличению выходного напряжения. Процесс сопровождается широтно-импульсным ре-гулированием длительности импульсов на входе VD2, следовательно, напряжение на конденсаторе С2 остается стабилизированным как на холостом ходу, так и под нагрузкой.
В выпрямителе с отрицательным выходным напряжением парал-лельно диоду VD1 нужно включить p-n-р транзистор КТ973А или КТ825А. Выходное стабилизированное напряжение на нагрузке сопротивлением 470 Ом — около 11 В, напряжение пульсации — 0,3...0,4 В.
В обоих предложенных вариантах бестрансформаторного выпря-мителя стабилитрон работает в импульсном режиме при токе в единицы миллиампер, который никак не связан с током нагруз-ки выпрямителя, с разбросом емкости гасящего конденсатора и колебаниями напряжения сети. Поэтому потери в нем существен-но уменьшены, и теплоотвод ему не требуется. Ключевому тран-зистору радиатор также не требуется.
Резисторы Rl, R2 в этих схемах ограничивают входной ток при переходных процессах в момент включения устройства в сеть. Из-за неизбежного «дребезга» контактов сетевых вилки и розетки, процесс включения сопровождается серией кратковременных за-мыканий и разрывов цепи. При одном из таких замыканий гася-щий конденсатор С1 может зарядиться до полного амплитудного значения напряжения сети, т.е. примерно до 300 В. После разры-ва и последующего замыкания цепи из-за «дребезга» это и сетевое напряжения могут сложиться и составить в сумме около 600 В. Это наихудший случай, который необходимо учитывать для обеспечения надежной работы устройства. Конкретный пример: мак-симальный коллекторный ток транзистора КТ972А равен 4 А, поэтому суммарное сопротивление ограничительных резисторов должно составлять 600 В / 4 А = 150 Ом. С целью уменьшения потерь сопротивление резистора R1 можно выбрать 51 Ом, а ре-зистора R2 — 100 Ом. Их мощность рассеяния — не менее 0,5 Вт. Допустимый коллекторный ток транзистора КТ827А составляет 20 А, поэтому для него резистор R2 необязателен.

Сейчас в доме имеется много малогабаритной аппаратуры, которой требуется постоянное питание. Это и часы со светодиодной индикацией, и термометры, и малогабаритные приемники, и т.п. В принципе, они рассчитаны на батарейки, но те "садятся" в самый неподходящий момент. Простой выход - запитать их от сетевых блоков питания. Но даже малогабаритный сетевой (понижающий) трансформатор достаточно тяжел и места занимает не так уж мало, а импульсные источники питания все-таки сложны, требуют для изготовления определенного опыта и недешевой комплектации.

Решением данной проблемы при выполнении определенных условий может служить бестрансформаторный блок питания с гасящим конденсатором. Эти условия:

  • полная автономность питаемого аппарата, т.е. к нему не должны подключаться никакие внешние устройства (например, к приемнику магнитофон для записи программы);
  • диэлектрический (непроводящий) корпус и такие же ручки управления у самого блока питания и подключаемого к нему устройства.

Связано это с тем, что при питании от бестрансформаторного блока устройство находится под потенциалом сети, и прикосновение к его неизолированным элементам может хорошо "тряхнуть". Нелишне добавить, что при наладке таких блоков питания следует соблюдать правила техники безопасности и осторожность.

При необходимости использовать для наладки осциллограф блок питания нужно включать через разделительный трансформатор.

В самом простом виде схема бестрансформаторного блока питания имеет вид, показанный на рис.1.

Для ограничения броска тока при подключении блока к сети последовательно с конденсатором С1 и выпрямительным мостом VD1 включен резистор R2,а для разрядки конденсатора после отключения - параллельно ему резистор R1.

Бестрансформаторный источник питания в общем случае представляет собой симбиоз выпрямителя и параметрического стабилизатора. Конденсатор С1 для переменного тока представляет собой емкостное (реактивное, т.е. не потребляющее энергию) сопротивление Хс, величина которого определяется по формуле:

где (- частота сети (50 Гц); С-емкость конденсатора С1, Ф.

Тогда выходной ток источника можно приблизительно определить так:

где Uc - напряжение сети (220 В).

Входная часть другого блока питания (рис.2а) содержит балластный конденсатор С1 и мостовойвыпрямитель из диодов VD1, VD2и стабилитронов VD3, VD4. Резисторы R1, R2 играют ту же роль, что и в первой схеме. Осциллограмма выходного напряжения блока приведена на рис.2б (когда напряжение на выходе превышает напряжение стабилизации стабилитронов, в противном случае он работает как обычный диод).

От начала положительного полупериода тока через конденсатор С1 до момента t1 стабилитрон VD3 и диод,VD2 открыты, а стабилитрон VD4 и диод VD1 закрыты. В интервале времени t1...t3 стабилитрон VD3 и диод VD2 остаются открытыми, а через открывшийся стабилитрон VD4 проходит импульс тока стабилизации. Напряжение на выходе Uвых и на стабилитроне VD4 равно его напряжению стабилизации Uст.

Импульсный ток стабилизации, являющийся для диодно-стабилитронного выпрямителя сквозным, минует нагрузку RH, которая подключена к выходу моста. В момент t2 ток стабилизации достигает максимума, а в момент t3 равен нулю. До окончания положительного полупериода остаются открытыми стабилитрон VD3 и диод VD2.

В момент t4 завершается положительный и начинается отрицательный полупериод, от начала которого до момента t5 уже стабилитрон VD4 и диод VD1 открыты, а стабилитрон VD3 и диод VD2 закрыты. В интервале времени t5-t7 стабилитрон VD4 и диод VD1 продолжают оставаться открытыми, а через стабилитрон VD3 при напряжении UCT проходит сквозной импульс тока стабилизации, максимальный в момент t6. Начиная от t7 и до завершения отрицательного полупериода остаются открытыми стабилитрон VD4 и диод VD1. Рассмотренный цикл работы диодно-стабилитронного выпрямителя повторяется в следующие периоды сетевого напряжения.

Таким образом, через стабилитроны VD3, VD4 от анода к катоду проходит выпрямленный ток, а в противоположном направлении - импульсный ток стабилизации. В интервалы времени t1...t3 и t5...t7 напряжение стабилизации изменяется не более чем на единицы процентов. Значение переменного тока на входе моста VD1...VD4 в первом приближении равно отношению напряжения сети к емкостному сопротивлению балластного конденсатора С1.

Работа диодно-стабилитронного выпрямителя без балластного конденсатора, ограничивающего сквозной ток, невозможна. В функциональном отношении они неразделимы и образуют единое целое - конденсаторно-стабилитронный выпрямитель.

Разброс значений UCT однотипных стабилитронов составляет примерно 10%, что приводит к возникновению дополнительных пульсаций выходного напряжения с частотой питающей сети, амплитуда напряжения пульсации пропорциональна разнице значений Uст стабилитронов VD3 и VD4.

При использовании мощных стабилитронов Д815А...Д817Г их можно установить на общий радиатор, если в обозначении их типа присутствуют буквы "ПП (стабилитроны Д815АПП...Д817ГПП имеют обратную полярность выводов). В противном случае диоды и стабилитроны необходимо поменять местами.

Бестрансформаторные источники питания обычно собираются по классической схеме: гасящий конденсатор, выпрямитель переменного напряжения, конденсатор фильтра, стабилизатор. Емкостной фильтр сглаживает пульсации выходного напряжения. Чем больше емкость конденсаторов фильтра, тем меньше пульсации и, соответственно, больше постоянная составляющая выходного напряжения. Однако в ряде случаев можно обойтись без фильтра, который зачастую является самым громоздким узлом такого источника питания.

Известно, что конденсатор, включенный в цепь переменного тока, сдвигает его фазу на 90°. Фазосдвигающий конденсатор применяют, например, при подключении трехфазного двигателя к однофазной сети. Если в выпрямителе применить фазосдвигающий конденсатор, обеспечивающий взаимное перекрытие полуволн выпрямленного напряжения, во многих случаях можно обойтись без громоздкого емкостного фильтра или существенно уменьшить его емкость. Схема подобного стабилизированного выпрямителя показана на рис.3.

Трехфазный выпрямитель VD1.VD6 подключен к источнику переменного напряжения через активное (резистор R1) и емкостное (конденсатор С1) сопротивления.

Выходное напряжение выпрямителя стабилизирует стабилитрон VD7. Фазосдвигающий конденсатор С1 должен быть рассчитан на работу в цепях переменного тока. Здесь, например, подойдут конденсаторы типа К73-17 с рабочим напряжением не ниже 400 В.

Такой выпрямитель можно применять там, где необходимо уменьшить габариты электронного устройства, поскольку размеры оксидных конденсаторов емкостного фильтра, как правило, гораздо больше, чем фазосдвигающего конденсатора сравнительно небольшой емкости.

Еще одно преимущество предложенного варианта состоит в том, что потребляемый ток практически постоянен (в случае постоянной нагрузки), тогда как в выпрямителях с емкостным фильтром в момент включения пусковой ток значительно превышает установившееся значение (вследствие заряда конденсаторов фильтра), что в некоторых случаях крайне нежелательно.

Описанное устройство можно применять и с последовательными стабилизаторами напряжения, имеющими постоянную нагрузку, а также с нагрузкой, не требующей стабилизации напряжения.

Совершенно простенький бестрансформаторный блок питания (рис.4) можно соорудить "на коленке" буквально за полчаса.


В данном варианте схема рассчитана на выходное напряжение 6,8 В и ток 300 мА. Напряжение можно менять заменой стабилитрона VD4 и, при необходимости, VD3 А установив транзисторы на радиаторы, можно увеличить и ток нагрузки. Диодный мост - любой, рассчитанный на обратное напряжение не менее 400 В. Кстати, можно вспомнить и про "древние" диоды. Д226Б.

В другом бестрансформаторном источнике (рис.5) в качестве стабилизатора применена микросхема КР142ЕН8. Его выходное напряжение составляет 12 В. Если необходима регулировка выходного напряжения, то вывод 2 микросхемы DA1 подключают к общему проводу через переменный резистор, например, типа СПО-1 (с линейной характеристикой изменения сопротивления). Тогда выходное напряжение может изменяться в диапазоне 12...22 В.

В качестве микросхемы DA1 для получения других выходных напряжений нужно применить соответствующие интегральные стабилизаторы, например, КР142ЕН5, КР1212ЕН5,КР1157ЕН5А и др. Конденсатор С1 должен быть обязательно на рабочее напряжение не ниже 300 В, марки К76-3, К73-17 или аналогичный (неполярный, высоковольтный). Оксидный конденсатор С2 выполняет роль фильтра по питанию и сглаживает пульсации напряжения. Конденсатор С3 уменьшает помехи по высокой частоте. Резисторы R1, R2 - типа МЛТ-0,25. Диоды VD1...VD4 можно заменить на КД105Б...КД105Г, КД103А, Б, КД202Е. Стабилитрон VD5 с напряжением стабилизации 22...27 В предохраняет микросхему от бросков напряжения в момент включения источника.


Несмотря на то, что теоретически конденсаторы в цепи переменного тока мощности не потребляют, реально в них из-за наличия потерь может выделяться некоторое количество тепла. Проверить пригодность конденсатора в качестве гасящего для использования в бестрансформаторном источнике можно просто подключив его к электросети и оценив температуру корпуса через полчаса. Если конденсатор успевает заметно разогреться, он не подходит. Практически не нагреваются специальные конденсаторы для промышленных электроустановок (они рассчитаны на большую реактивную мощность). Такие конденсаторы обычно используются в люминесцентных светильниках, в пускорегулирующих устройствах асинхронных электродвигателей и т.п.

В 5-вольтовом источнике (рис.6) с током нагрузки до 0,3 А применен конденсаторный делитель напряжения. Он состоит из бумажного конденсатора С1 и двух оксидных С2 и С3, образующих нижнее (по схеме) неполярное плечо емкостью 100 мкФ (встречно-последовательное включение конденсаторов). Поляризующими диодами для оксидной пары служат диоды моста. При указанных номиналах элементов ток короткого замыкания на выходе блока питания равен 600 мА, напряжение на конденсаторе С4 в отсутствие нагрузки - 27 В.

Блок для питания портативного приемника (рис.7) легко помещается в его батарейный отсек. Диодный мост VD1рассчитывается на рабочий ток, его предельное напряжение определяется напряжением, которое обеспечивает стабилитрон VD2. Элементы R3, VD2. VT1 образуют аналог мощного стабилитрона. Максимальный ток и рассеиваемая мощность такого стабилитрона определяются транзистором VT1. Для него может потребоваться радиатор. Но в любом случае максимальный ток этого транзистора не должен быть меньше тока нагрузки. Элементы R4, VD3 - цепь индикации наличия выходного напряжения. При малых токах нагрузки необходимо учитывать ток, потребляемый этой цепью. Резистор R5 нагружает цепь питания малым током, чем стабилизирует ее работу.


Гасящие конденсаторы С1 и С2 - типа КБГ или аналогичные. Можно также применить и К73-17 с рабочим напряжением 400 В (подойдут и с 250 В, так как они включены последовательно). Выходное напряжение зависит от сопротивления гасящих конденсаторов переменному току, реального тока нагрузки и от напряжения стабилизации стабилитрона.

Для стабилизации напряжения бестрансформаторного блока питания с гасящим конденсатором можно использовать симметричные динисторы (рис.8).

При зарядке конденсатора фильтра С2 до напряжения открывания динистора VS1 он включается и шунтирует вход диодного моста. Нагрузка в это время получает питание от конденсатора С2 В начале следующего полупериода С2 вновь подзаряжается до того же напряжения, и процесс повторяется. Начальное напряжение разрядки конденсатора С2 не зависит от тока нагрузки и напряжения сети, поэтому стабильность выходного напряжения блока достаточно высокая.

Падение напряжения на динисторе во включенном состоянии невелико, рассеиваемая мощность, а значит, и нагрев его значительно меньше, чем у стабилитрона. Максимальный ток через динистор составляет около 60 мА. Если для получения необходимого выходного тока этого значения недостаточно, можно "умощнить динистор симистором или тиристором (рис.9). Недостаток таких источников питания - ограниченный выбор выходных напряжений, определяемый напряжениями включения динисторов.

Бестрансформаторный блок питания с регулируемым выходным напряжением показан на рис.10а.


Его особенность заключается в использовании регулируемой отрицательной обратной связи с выхода блока на транзисторный каскад VT1,включенный параллельно выходу диодного моста. Этот каскад является регулирующим элементом и управляется сигналом с выхода однокаскадного усилителя на VT2.

Выходной сигнал VT2 зависит от разности напряжений, подаваемых с переменного резистора R7, включенного параллельно выходу блока питания, и источника опорного напряжения на диодах VD3, VD4. По существу, схема представляет собой регулируемый параллельный стабилизатор. Роль балластного резистора играет гасящий конденсатор С1, параллельного управляемого элемента - транзистор VT1.

Работает этот блок питания следующим образом.

При включении в сеть транзисторы VT1 и VT2 заперты, а через диод VD2 происходит заряд накопительного конденсатора С2. При достижении на базе транзистора VT2 напряжения, равного опорному на диодах VD3, VD4, транзисторы VT2 и VT1отпираются. Транзистор VT1 шунтирует выход диодного моста, и его выходное напряжение падает, что приводит к уменьшению напряжения на накопительном конденсаторе С2 и к запиранию транзисторов VT2 и VT1. Это, в свою очередь, вызывает увеличение напряжения на С2, отпирание VT2, VT1 и повторение цикла.

За счет действующей таким образом отрицательной обратной связи выходное напряжение остается постоянным (стабилизированным) как при включенной нагрузке (R9), так и без нее (на холостом ходу). Его величина зависит от положения движка потенциометра R7.

Верхнему (по схеме) положению движка соответствует большее выходное напряжение. Максимальная выходная мощность приведенного устройства равна 2 Вт. Пределы регулировки выходного напряжения - от 16 до 26 В, а при закороченном диодеVD4 - от 15 до 19,5 В. Уровень пульсаций на нагрузке - не более 70 мВ.

Транзистор VT1 работает в переменном режиме: при наличии нагрузки - в линейном режиме, на холостом ходу - в режиме широтно-импульсной модуляции (ШИМ) с частотой пульсации напряжения на конденсаторе С2 100 Гц. При этом импульсы напряжения на коллекторе VT1 имеют пологие фронты.

Критерием правильности выбора емкости С1 является получение на нагрузке требуемого максимального напряжения. Если его емкость уменьшена, то максимальное выходное напряжение на номинальной нагрузке не достигается. Другим критерием выбора С1 является неизменность осциллограммы напряжения на выходе диодного моста (рис.10б).

Осциллограмма напряжения имеет вид последовательности выпрямленных синусоидальных полуволн сетевого напряжения с ограниченными (уплощенными) вершинами положительных полусинусоид, амплитуда вершин является переменной величиной, зависящей от положения движка R7, и меняется линейно при его вращении. Но каждая полуволна должна обязательно доходить до нуля, наличие постоянной составляющей (как показано на рис.10б пунктиром) не допускается, т.к. при этом нарушается режим стабилизации.

Линейный режим является облегченным, транзистор VT1 нагревается мало и может работать практически без радиатора. Небольшой нагрев имеет место в нижнем положении движка R7 (при минимальном выходном напряжении). На холостом ходу тепловой режим транзистора VT1 ухудшается в верхнем положении движка R7 В этом случае транзистор VT1 должен быть установлен на небольшой радиатор, например, в виде "флажка" из алюминиевой пластинки квадратной формы со стороной 30 мм и толщиной 1...2 мм.

Регулирующий транзистор VT1 - средней мощности, с большим коэффициентом передачи. Его коллекторный ток должен быть в 2...3 раза больше максимального тока нагрузки, допустимое напряжение коллектор-эмиттер - не меньше максимального выходного напряжения блока питания. В качестве VT1 могут быть использованы транзисторы КТ972А, КТ829А, КТ827А и т.п. Транзистор VT2работает в режиме малых токов, поэтому годится любой маломощный p-n-р-транзистор - КТ203, КТ361 и др.

Резисторы R1, R2 - защитные. Они предохраняют регулирующий транзистор VT1 от выхода из строя вследствие перегрузки по току при переходных процессах в момент включения блока в сеть.

Бестрансформаторный конденсаторный выпрямитель (рис.11) работает с автостабилизацией выходного напряжения. Это достигнуто за счет изменения времени подключения диодного моста к накопительному конденсатору. Параллельно выходу диодного моста включен транзистор VT1, работающий в ключевом режиме. База VT1 через стабилитрон VD3 соединена с накопительным конденсатором С2, отделенным по постоянному току от выхода моста диодом VD2 для исключения быстрого разряда при открытом VT1. Пока напряжение на С2 меньше напряжения стабилизации VD3, выпрямитель работает как обычно. При увеличении напряжения на С2 и открывании VD3 транзистор VT1 также открывается и шунтирует выход выпрямительного моста. Напряжение на выходе моста скачкообразно уменьшается практически до нуля, что приводит к уменьшению напряжения на С2 и выключению стабилитрона и ключевого транзистора.

Далее напряжение на конденсаторе С2 снова увеличивается до момента включения стабилитрона и транзистора и т.д. Процесс автостабилизации выходного напряжения очень похож на работу импульсного стабилизатора напряжения с широтно-импульсным регулированием. Только в предлагаемом устройстве частота следования импульсов равна частоте пульсаций напряжения на С2. Ключевой транзистор VT1 для уменьшения потерь должен быть с большим коэффициентом усиления, например, КТ972А, КТ829А, КТ827А и др. Увеличить выходное напряжение выпрямителя можно, применив более высоковольтный стабилитрон (цепочку низковольтных, соединенных последовательно). При двух стабилитронах Д814В, Д814Д и емкости конденсатора С1 2 мкФ выходное напряжение на нагрузке сопротивлением 250 Ом может составлять 23...24 В.

Аналогично можно стабилизировать выходное напряжение однополупериодного диодно-конденсаторного выпрямителя (рис.12).

Для выпрямителя с плюсовым выходным напряжением параллельно диоду VD1 включен n-p-n транзистор, управляемый с выхода выпрямителя через стабилитрон VD3. При достижении на конденсаторе С2 напряжения, соответствующего моменту открывания стабилитрона, транзистор VT1 тоже открывается. В результате, амплитуда положительной полуволны напряжения, поступающего на С2 через диод VD2, уменьшается почти до нуля. При уменьшении же напряжения на С2 транзистор VT1 благодаря стабилитрону закрывается, что приводит к увеличению выходного напряжения. Процесс сопровождается широтно-импульсным регулированием длительности импульсов на входе VD2, следовательно, напряжение на конденсаторе С2 стабилизировано.

В выпрямителе с отрицательным выходным напряжением параллельно диоду VD1 нужно включить p-n-p-транзистор КТ973А или КТ825А. Выходное стабилизированное напряжение на нагрузке сопротивлением 470 Ом - около 11 В, напряжение пульсаций - 0,3...0,4 В.

В обоих вариантах стабилитрон работает в импульсном режиме при токе в единицы миллиампер, который никак не связан с током нагрузки выпрямителя, разбросом емкости гасящего конденсатора и колебаниями напряжения сети. Поэтому потери в нем существенно уменьшены, и теплоотвод ему не требуется. Ключевому транзистору радиатор также не требуется.

Резисторы R1, R2 в этих схемах ограничивают входной ток при переходных процессах в момент включения устройства в сеть. Из-за неизбежного "дребезга" контактов сетевой вилки процесс включения сопровождается серией кратковременных замыканий и разрывов цепи. При одном из таких замыканий гасящий конденсатор С1 может зарядиться до полного амплитудного значения напряжения сети, т.е. примерно до 300 В. После разрыва и последующего замыкания цепи из-за "дребезга" это и сетевое напряжения могут сложиться и составить в сумме около 600 В. Это наихудший случай, который необходимо учитывать для обеспечения надежной работы устройства.

Другой вариант ключевой бестрансформаторной схемы источника питания представлен на рис.13.


Сетевое напряжение, проходя через диодный мост наVD1.VD4, преобразуется в пульсирующее амплитудой около 300 В. Транзистор VT1 - компаратор, VT2 - ключ. Резисторы R1, R2 образуют делитель напряжения для VT1. Подстройкой R2 можно установить напряжение срабатывания компаратора. Пока напряжение на выходе диодного моста не достигнет установленного порога, транзистор VT1 закрыт, на затворе VT2 - отпирающее напряжение и он открыт. Через VТ2 и диод VD5 заряжается конденсатор С1.

При достижении установленного порога срабатывания транзистор VT1 открывается и шунтирует затвор VT2. Ключ закрывается и снова откроется тогда, когда напряжение на выходе моста станет меньше порога срабатывания компаратора. Таким образом, на С1 устанавливается напряжение, которое стабилизируется интегральным стабилизатором DA1.

С приведенными на схеме номиналами источник обеспечивает выходное напряжение 5 В при токе до 100 мА. Настройка заключается в установке порога срабатывания VT1. Вместо IRF730 можно использовать. КП752А, IRF720, BUZ60, 2N6517заменяется на КТ504А.

Миниатюрный бестрансформаторный блок питания для малопотребляющих устройств можно построить на микросхеме HV-2405E (рис.14), которая осуществляет прямое преобразование переменного напряжения в постоянное.


Диапазон входного напряжения ИМС -15...275 В. выходного - 5...24 В при максимальном выходном токе до 50 мА. Выпускается в плоском пластмассовом корпусе DIP-8. Структура микросхемы приведена на рис.15а, цоколевка - на рис.15б.


В схеме источника (рис. 14) особое внимание нужно уделить резисторам R1 и R2. Их общее сопротивление должно быть в районе 150 Ом, а рассеиваемая мощность - не менее 3 Вт. Входной высоковольтный конденсатор С1 может иметь емкость от 0,033 до 0,1 мкФ. Варистор Rv можно применить практически любой с рабочим напряжением 230.250 В. Резистор R3выбирается в зависимости от требуемого выходного напряжения. При его отсутствии (выходы 5 и 6 замкнуты) выходное напряжение чуть более 5 В, при сопротивлении 20 кОм выходное напряжение - около 23 В. Вместо резистора можно включить стабилитрон с необходимым напряжением стабилизации (от 5 до 21 В). К остальным деталям особых требований нет, за исключением выбора рабочего напряжения электролитических конденсаторов (формулы для расчета приведены на схеме).

Учитывая потенциальную опасность бестрансформаторных источников, в ряде случаев может представлять интерес компромиссный вариант: с гасящим конденсатором и трансформатором (рис.16).

Здесь подойдет трансформатор с высоковольтной вторичной обмоткой, поскольку необходимое выпрямленное напряжение устанавливается подбором емкости конденсатора С1. Главное, чтобы обмотки трансформатора обеспечивали требуемый ток.

Чтобы устройство не вышло из строя при отключении нагрузки, к выходу моста VD1...VD4 следует подключить стабилитрон Д815П. В нормальном режиме он не работает, поскольку его напряжение стабилизации выше рабочего на выходе моста. Предохранитель FU1 защищает трансформатор и стабилизатор при пробое конденсатора С1.

В источниках такого вида в цепи последовательно соединенных емкостного (конденсатор С1) и индуктивного (трансформатор Т1) сопротивлений может возникать резонанс напряжения. Об этом следует помнить при их налаживании и контролировать напряжения осциллографом.

Смотрите другие статьи раздела .

Читайте и пишите полезные



В таком источнике питания к сети пе­ременного напряжения подключены по­следовательно соединенные конденса­тор и нагрузка. Рассмотрим вначале ра­боту источника с чисто резистивной на­грузкой (рис.1,а).

Из курса электротехники известно, что полное сопротивление последова­тельно включенных конденсатора С1 и резистора Рн равно:

где X c 1 =1/2n*f*C1 - емкостное сопротив­ление конденсатора на частоте f. Поэто-

Рис.1

му эффективный переменный ток в цепи Iэфф=Uс/Z (Uc - напряжение питающей се­ти). Нагрузочный ток связан с емкостью конденсатора, выходным напряжением источника и напряжением сети следую

Для малых значений выходного на­пряжения

Iэфф=2л*f*С1*Uс.

В качестве примера, полезного в практике, проведем расчет гасящего кон­денсатора для включения в сеть 220 В паяльника на 127 В мощностью 40 Вт. Не­обходимое эффективное значение тока нагрузки Iэфф=40/127=0,315 А. Расчетная емкость гасящего конденсатора

Для работы нагревательных приборов важно значение именно эффективного то­ка. Однако, если нагрузкой является, на­пример, аккумуляторная батарея, вклю­ченная в диагональ выпрямительного мос­та (рис. 1 ,б), заряжать ее будет уже сред-невыпрямленный (пульсирующий) ток, численное значение которого меньше Iэфф:


В радиолюбительской практике часто используют источник, в котором гасящий конденсатор включен в сеть последова­тельно с диодным мостом, а нагрузка, за-шунтированная другим конденсатором, питается от выходной диагонали моста (рис. 2). В этом случае цепь становится резко нелинейной и форма тока, протека­ющего через мост и гасящий конденса­тор, будет отличаться от синусоидаль­ной. Из-за этого представленный выше расчет оказывается неверным.

Каковы процессы, происходящие в ис­точнике со сглаживающим конденсато­ром С2 емкостью, достаточной для того, чтобы считать пульсации выходного на­пряжения пренебрежимо малыми? Для гасящего конденсатора С1 диодный мост (вместе с С2 и Rн) в установившемся ре­жиме представляет собой некий эквива­лент симметричного стабилитрона. При напряжении на этом эквиваленте, мень­шем некоторого значения (оно практиче­ски равно напряжению Uвых на конденса­торе С2), мост закрыт и тока не прово­дит, при большем - через открытый мост течет ток, не давая увеличиваться на­пряжению на входе моста.

Рассмотрение начнем с момента ti, когда напряжение сети максимально (рис. 3). Конденсатор С1 заряжен до амп­литудного напряжения сети Uс.амп за вы­четом напряжения на диодном мосте uм, примерно равного Uвых. Ток через кон­денсатор С1 и закрытый мост равен ну­лю. Напряжение в сети уменьшается по косинусоидальному закону (график 1), на мосте также уменьшается (график 2), а напряжение на конденсаторе С1 не меня­ется.

Ток конденсатора останется нулевым до тех пор, пока напряжение на диодном мосте, сменив знак на противоположный, не достигнет значения -Uвых (момент t2). В этот момент появится скачком ток lei через конденсатор С1 и мост. Начиная с момента t2, напряжение на мосте не ме­няется, а ток определяется скоростью изменения напряжения сети и, следова­тельно, будет точно таким же, как если бы к сети был подключен только конден­сатор С1 (график 3).

Когда напряжение сети достигнет от­рицательного амплитудного значения (момент t 3), ток через конденсатор С1 снова станет равным нулю. Далее про­цесс повторяется каждый полупериод.

Ток через мост протекает лишь в ин­тервале времени от t 2 до t 3 , его среднее значение может быть рассчитано как площадь заштрихованной части синусои­ды на графике 3. Несложные расчеты, требующие, однако, знания дифференци­ального и интегрального исчисления, да­ют такую формулу для среднего тока Iср через нагрузку Rн:

(2)

При малых значениях выходного на­пряжения эта формула и ранее получен­ная (1) дают одинаковый результат. Если в (2) выходной ток приравнять к нулю, по­лучим Uвыx=Uc*2 ^1/2 , т. е. при токе нагрузки, равном нулю (при случайном отключении нагрузки, скажем, из-за ненадежного контакта), выходное напряжение источ­ника становится равным амплитудному напряжению сети. Это означает, что все элементы источника должны выдержи­вать такое напряжение. При уменьшении тока нагрузки, например, на 10%, выход­ное напряжение увеличится так, чтобы выражение в скобках также уменьши­лось на 10%, т. е. примерно на 30 В (при Uвых=10 В). Вывод - включение стабили­трона параллельно нагрузке Rн (как по­казано штриховыми линиями на рис. 2) практически обязательно.

Для однополупериодного выпрямите­ля (рис. 4) ток рассчитывают по следую­щей формуле:

Естественно, при малых значениях выходного напряжения ток нагрузки бу­дет вдвое меньше, чем для двуполупери-одного выпрямителя, а выходное напря­жение при нулевом токе нагрузки - вдвое больше - ведь это выпрямитель с удвое­нием напряжения!

Порядок расчета источников по схеме на рис. 2 следующий. Вначале задаются выходным напряжением Uвых, максималь­ным Iн max и минимальным I н min значения-ми тока нагрузки, максимальным Uc max и минимальным Uc min значениями напря­жения сети. Выше уже было указано, что при меняющемся токе нагрузки обязате­лен стабилитрон, включенный парал­лельно нагрузке Rн. Как его выбирать? При минимальном напряжении сети и максимальном токе нагрузки через ста­билитрон должен протекать ток не менее допустимого минимального тока стабили­зации 1ст min. Можно задаться значением в пределах 3...5 мА. Теперь определяют емкость гасящего конденсатора С1 для двуполупериодного выпрямителя:

С1 =3,5(Iст min+lн max)/(Uc min-0,7Uвыx). (3)


Формула получена из (2) подстанов­кой соответствующих значений. Ток в ней - в миллиамперах, напряжение - в воль­тах; емкость получится в микрофарадах. Результат расчета округляют до ближай­шего большего номинала; можно исполь­зовать батарею из нескольких конденса­торов, включенных параллельно.

I ст max =(U c mах -0,7Uвых)С 1 /3,5-I н min (4)

При отсутствии стабилитрона на не­обходимое напряжение Uвых, допускаю­щего рассчитанный максимальный ток стабилизации, можно соединить несколь­ко стабилитронов на меньшее напряже­ние последовательно или применить ана­лог мощного стабилитрона .

Подставлять в формулу (4) минималь­ный ток нагрузки Iн mm следует лишь тог­да, когда этот ток длителен - единицы секунд и более. При кратковременном минимальном токе нагрузки (доли секун­ды) его надо заменить средним (по вре­мени) током нагрузки. Если стабилитрон допускает ток, больший рассчитанного по формуле (4), целесообразно использо­вать гасящий конденсатор несколько большей емкости для уменьшения требо­ваний к точности его подборки.