Импульсные преобразователи напряжения. Импульсный преобразователь напряжения

Для преобразования напряжения одного уровня в напряжение другого уровня часто применяют импульсные преобразователи напряжения с использованием индуктивных накопителей энергии . Такие преобразователи отличаются высоким КПД, иногда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразователей: понижающие (рис. 4.1), повышающие (рис. 4.2) и инвертирующие (рис. 4.3).

Общими для всех этих видов преобразователей являются пять элементов: источник питания, ключевой коммутирующий элемент, индуктивный накопитель энергии (катушка индуктивности, дроссель), блокировочный диод и конденсатор фильтра, включенный параллельно сопротивлению нагрузки.

Включение этих пяти элементов в различных сочетаниях позволяет реализовать любой из трех типов импульсных преобразователей.

Регулирование уровня выходного напряжения преобразователя осуществляется изменением ширины импульсов, управляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии.

Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий преобразователь (рис. 4.1) содержит последовательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки Rн и включенного параллельно ему конденсатора фильтра С1 . Блокировочный диод VD1 подключен между точкой соединения ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 4.1. Принцип действия понижающего преобразователя напряжения

Рис. 4.2. Принцип действия повышающего преобразователя напряжения

При открытом ключе диод закрыт, энергия от источника питания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктивным накопителем L1 энергия через диод VD1 передастся в сопротивление нагрузки R н. Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь напряжения (рис. 4.2) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки с параллельно подключенным конденсатором фильтра С1 . Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источника питания, ключа и накопителя энергии. Напряжение на сопротивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС самоиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полученное таким способом выходное напряжение превышает напряжение питания.


Рис. 4.3. Импульсное преобразование напряжения с инвертированием

Инвертирующий преобразователь импульсного типа содержит все то же сочетание основных элементов, но снова в ином их соединении (рис. 4.3): к источнику питания подключена последовательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки R н с конденсатором фильтра С1. Индуктивный накопитель энергии L1 включен между точкой соединения коммутирующего элемента S1 с диодом VD1 и общей шиной.

Работает преобразователь так: при замыкании ключа энергия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается приложенной к выпрямителю, содержащему диод VD1, сопротивление нагрузки R н и конденсатор фильтра С1. Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицательного напряжения, на выходе устройства формируется напряжение отрицательного знака (инверсное, противоположное по знаку напряжению питания).

Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД. В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.

Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией . В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульснью стабилизаторы и со смешанным регулированием.

Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.

Задающий генератор (рис. 4.4) импульсных преобразователей с нестабилизированным выходным напряжением (рис. 4.5, 4.6) на микросхеме КР1006ВИ1 (NE 555) работает на частоте 65 кГц. Выходные прямоугольные импульсы генератора через RC-цепочки подаются на транзисторные ключевые элементы, включенные параллельно.

Катушка индуктивности L1 выполнена на ферритовом кольце с внешним диаметром 10 мм и магнитной проницаемостью 2000. Ее индуктивность равна 0,6 мГн. Коэффициент полезного действия преобразователя достигает 82%. Амплитуда пульсаций на выходе не превышает 42 мВ и зависит от величины емкости


Рис. 4.4. Схема задающего генератора для импульсных преобразователей напряжения


Рис. 4.5. Схема силовой части повышающего импульсного преобразователя напряжения +5/12 В


Рис. 4.6. Схема инвертирующего импульсного преобразователя напряжения +5/-12 В

конденсаторов на выходе устройства. Максимальный ток нагрузки устройств (рис. 4.5, 4.6) составляет 140 мА.

В выпрямителе преобразователя (рис. 4.5, 4.6) использовано параллельное соединение слаботочных высокочастотных диодов, включенных последовательно с выравнивающими резисторами R1 - R3. Вся эта сборка может быть заменена одним современным диодом, рассчитанным на ток более 200 мА при частоте до 100 кГц и обратном напряжении не менее 30 В (например, КД204, КД226). В качестве VT1 и VT2 возможно использование транзисторов типа КТ81х: структуры n-р-n - КТ815, КТ817 (рис. 4.5) и р-n-р - КТ814, КТ816 (рис. 4.6) и другие. Для повышения надежности работы преобразователя рекомендуется включить параллельно переходу эмиттер - коллектор транзистoра диод типа КД204, КД226 таким образом, чтобы для постоянного тока он был закрыт.

Однако, цена подобного устройства средней мощности (300-500 Вт) составляет несколько тысяч рублей, а надежность многих китайских инверторов достаточно спорна. Изготовление своими руками простого преобразователя – это не только способ ощутимо сэкономить, но и возможность улучшить свои знания в электронике. В случае отказа же ремонт самодельной схемы окажется ощутимо проще.

Распространенные схемы

Простой импульсный преобразователь

Схема этого устройства очень проста , а большинство деталей могут быть извлечены из ненужного . Конечно, у нее есть и ощутимый недостаток – получаемое на выходе трансформатора напряжение 220 вольт далеко по форме от синусоидального и имеет частоту значительно больше, чем принятые 50 Гц. Напрямую подключать к нему электродвигатели или чувствительную электронику нельзя.


Для того, чтобы иметь возможность подключать к этому инвертору содержащую импульсные блоки питания технику (например, блок питания ноутбука), применено интересное решение – на выходе трансформатора установлен выпрямитель со сглаживающими конденсаторами . Правда, работать подключенный адаптер сможет только в одном положении розетки, когда полярность выходного напряжения совпадет с направлением встроенного в адаптер выпрямителя. Простые потребители типа ламп накаливания или паяльника можно подключать непосредственно к выходу трансформатора TR1.

Основа приведенной схемы – это ШИМ-контроллер TL494, наиболее распространенный в таких устройствах. Частоту работы преобразователя задают резистор R1 и конденсатор C2, их номиналы можно брать несколько отличающимися от указанных без заметного изменения в работе схемы.

Для большей эффективности схема преобразователя включает в себя два плеча на силовых полевых транзисторах Q1 и Q2. Эти транзисторы нужно разместить на алюминиевых радиаторах, если предполагается использовать общий радиатор – устанавливайте транзисторы через изоляционные прокладки. Вместо указанных на схеме IRFZ44 можно использовать близкие по параметрам IRFZ46 или IRFZ48.

Выходной дроссель наматывается на ферритовом кольце от дросселя, также извлекаемого из . Первичная обмотка мотается проводом диаметром 0,6 мм и имеет 10 витков с отводом от середины. Поверх нее наматывается вторичная обмотка, содержащая 80 витков. Также можно взять выходной трансформатор из сломанного источника бесперебойного питания.

Вместо высокочастотных диодов D1 и D2 можно взять диоды типов FR107, FR207.

Так как схема очень проста, после включения при правильном монтаже она начнет работать сразу и не потребует никакой настройки. Отдавать в нагрузку она сможет ток до 2,5 А, но оптимальным режимом работы будет ток не более 1,5 А – а это более 300 Вт мощности.

Готовый инвертор такой мощности стоил бы порядка трех-четырех тысяч рублей .

Эта схема выполнена на отечественных комплектующих и достаточно стара, но это не делает ее менее эффективной. Главное ее достоинство – это получение на выходе полноценного переменного тока с напряжением 220 вольт и частотой 50 Гц.


Здесь генератор колебаний выполнен на микросхеме К561ТМ2, представляющей собой сдвоенный D-триггер. Она является полным аналогом зарубежной микросхемы CD4013 и может быть заменена ей без изменений в схеме.

Преобразователь также имеет два силовых плеча на биполярных транзисторах КТ827А. Их главный недостаток по сравнению с современными полевыми – это большее сопротивление в открытом состоянии, из-за чего нагрев при той же коммутируемой мощности у них сильнее.

Так как преобразователь работает на низкой частоте, трансформатор должен иметь мощный стальной сердечник . Автор схемы предлагает использовать распространенный советский сетевой трансформатор ТС-180.

Как и другие инверторы на основе простых ШИМ-схем, этот преобразователь имеет на выходе достаточно отличающуюся от синусоидальной форму напряжения, но это несколько сглаживается большой индуктивностью обмоток трансформатора и выходным конденсатором С7. Также из-за этого трансформатор во время работы может издавать ощутимый гул – это не является признаком неисправности схемы.

Простой инвертор на транзисторах

Этот преобразователь работает по тому же принципу, что и перечисленные выше схемы, но генератор прямоугольных импульсов (мультивибратор) в нем построен на биполярных транзисторах.


Особенность этой схемы в том, что она сохраняет работоспособность даже на сильно разряженном аккумуляторе: диапазон входных напряжений составляет 3,5…18 вольт. Но, так как в ней отсутствует какая-либо стабилизация выходного напряжения, при разрядке аккумулятора будет одновременно пропорционально падать и напряжение на нагрузке.

Так как эта схема также является низкочастотной, трансформатор потребуется аналогичный используемому в инверторе на основе К561ТМ2.

Усовершенствования схем инверторов

Приведенные в статье устройства крайне просты и по ряду функций не могут сравниться с заводскими аналогами . Для улучшения их характеристик можно прибегнуть к несложным переделкам, которые к тому же позволят лучше понять принципы работы импульсных преобразователей.

Увеличение выходной мощности

Все описанные устройства работают по одному принципу: через ключевой элемент (выходной транзистор плеча) первичная обмотка трансформатора соединяется с входом питания на время, заданное частотой и скважностью задающего генератора. При этом генерируются импульсы магнитного поля, возбуждающие во вторичной обмотке трансформатора синфазные импульсы с напряжением, равным напряжению в первичной обмотке, умноженному на отношение числа витков в обмотках.

Следовательно, ток, протекающий через выходной транзистор, равен току нагрузки, помноженному на обратное соотношение витков (коэффициент трансформации). Именно максимальный ток, который может пропускать через себя транзистор, и определяет максимальную мощность преобразователя.

Существуют два способа увеличения мощности инвертора: либо применить более мощный транзистор, либо применить параллельное включение нескольких менее мощных транзисторов в одном плече. Для самодельного преобразователя второй способ предпочтительнее, так как позволяет не только применить более дешевые детали, но и сохраняет работоспособность преобразователя при отказе одного из транзисторов. В отсутствие встроенной защиты от перегрузок такое решение значительно повысит надежность самодельного прибора. Уменьшится и нагрев транзисторов при их работе на прежней нагрузке.

На примере последней схемы это будет выглядеть так:


Автоматическое отключение при разряде аккумулятора

Отсутствие в схеме преобразователя устройства, автоматически отключающего его при критическом падении напряжения питания, может серьезно подвести Вас , если оставить такой инвертор подключенным к аккумулятору автомобиля. Дополнить самодельный инвертор автоматическим контролем будет крайне полезно.

Простейший автоматический выключатель нагрузки можно сделать из автомобильного реле:


Как известно, каждое реле имеет определенное напряжение, при котором замыкаются его контакты. Подбором сопротивления резистора R1 (оно будет составлять около 10% от сопротивления обмотки реле) настраивается момент, когда реле разорвет контакты и прекратит подачу тока на инвертор.

ПРИМЕР : Возьмем реле с напряжением срабатывания (U р) 9 вольт и сопротивлением обмотки (R о) 330 ом. Чтобы оно срабатывало при напряжении выше 11 вольт (U min) , последовательно с обмоткой нужно включить резистор с сопротивлением R н, рассчитываемым из условия равенства U р / R о =(U min — U р)/ R н. В нашем случае потребуется резистор на 73 ома, ближайший стандартный номинал – 68 ом.

Конечно, это устройство крайне примитивно и является скорее разминкой для ума. Для более стабильной работы его нужно дополнить несложной схемой управления, которая поддерживает порог отключения гораздо точнее:


Регулировка порога срабатывания осуществляется подбором резистора R3.

Предлагаем посмотреть видео по теме

Обнаружение неисправностей инвертора

Перечисленные простые схемы имеют две наиболее распространенных неисправности – либо на выходе трансформатора отсутствует напряжение, либо оно слишком мало.

  • Первый случай – это либо одновременный отказ обоих плеч преобразователя, что маловероятно, либо отказ ШИМ-генератора. Для проверки воспользуйтесь светодиодным пробником, какой можно приобрести в любом магазине радиодеталей. Если ШИМ работает, на затворах транзисторов Вы увидите наличие сигнала по быстрым пульсациям свечения диода (особенно хорошо это заметно в низкочастотных схемах). При наличии управляющего сигнала проверьте, нет ли обрывов в соединениях трансформатора и целостность его обмотки.
  • Большое падение напряжения – это явный признак отказа одного из силовых плеч инвертора. Найти отказавший транзистор можно простейшим образом – его радиатор останется холодным. Замена ключа вернет инвертору работоспособность.

Заключение

Как можно понять из материалов статьи, сделать своими руками несложный преобразователь 12 – 220 вольт не так и трудно.

И, хотя такие устройства и не смогут сравниться по набору дополнительных функций или привлекательности внешнего вида с заводскими, они обойдутся хозяину значительно дешевле. При соблюдении правил эксплуатации самодельный преобразователь будет работать очень долго, ведь в таком простом устройстве практически нечему ломаться.

Напоследок предлагаем посмотреть еще один видеоматериал, про изготовление устройства из БП компьютера

Понижение напряжения постоянного тока. Как работает понижающий преобразователь напряжения. Где он применяется. Описание принципа действия. Пошаговая инструкция по проектированию (10+)

Понижающий импульсный преобразователь напряжения. Проектирование. Расчет

Для понижения постоянного напряжения с минимальными потерями и получения стабилизированного выхода применяется следующий подход. Постоянное напряжение преобразуется в импульсы переменной скважности. Далее эти импульсы пропускаются через катушку индуктивности. Энергия накапливается на накопительном конденсаторе. Обратная связь следит за стабильностью выходного напряжения и для этого регулирует скважность импульсов.

Если нет потребности в снижении потерь, то применяется последовательный стабилизатор непрерывного действия .

Принцип работы понижающего преобразователя напряжения основан на свойстве катушки индуктивности (дросселя) накапливать энергию. Накопление энергии проявляется в том, что сила тока через катушку индуктивности как бы имеет инерцию. То есть она не может измениться моментально. Если к катушке приложить напряжение, то сила тока будет постепенно нарастать, если приложить обратное напряжение, то сила тока будет постепенно убывать.

Вашему вниманию подборки материалов:

На схеме мы видим, что блок управления D1 в зависимости от напряжения на конденсаторе C2 замыкает и размыкает силовой ключ. Причем чем выше напряжение на C2 , тем меньше время, на которое замыкается ключ, то есть меньше коэффициент заполнения (больше скважность). Если напряжение на конденсаторе C2 превышает некоторое, то ключ вообще перестает замыкаться, пока напряжение не снизится. Как обеспечивается такая работа схемы управления, описано в статье о широтно-импульсной модуляции .

Когда силовой ключ замкнут, ток идет по пути S1 . При этом к катушке индуктивности приложено напряжение, равное разнице между входным и выходным напряжением. Ток через катушку увеличивается пропорционально напряжению, приложенному к катушке, и времени, на которое замыкается ключ. Катушка накапливает энергию. Протекающий ток заряжает конденсатор C2 .

Когда силовой ключ разомкнут, ток идет по пути S2 через диод. К катушке индуктивности приложено выходное напряжение с обратным знаком. Ток через катушку уменьшается пропорционально напряжению, приложенному к катушке, и времени, в течение которого ключ разомкнут. Протекающий ток по-прежнему заряжает конденсатор C2 .

Когда конденсатор C2 зарядится, ключ перестает замыкаться, зарядка конденсатора прекращается. Ключ снова начнет замыкаться, когда конденсатор C2 немного разрядится через нагрузку.

Конденсатор C1 нужен для того, чтобы уменьшить пульсации тока во входной цепи, отбирать из нее не импульсный, а средний ток.

Преимущества, недостатки, применимость

Потери энергии непосредственно зависят от отношения входного и выходного напряжений. Так понижающий преобразователь теоретически может сформировать большой выходной ток при малом напряжении из небольшого входного тока, но большого напряжения, но нам придется прерывать большой ток при большом напряжении, что гарантирует высокие коммутационные потери. Так что понижающие преобразователи применяются, если входное напряжение в 1.5 - 4 раза больше выходного, но их стараются не применять при большей разнице.

Разберем процесс проектирования и расчета понижающего преобразователя и опробуем его на примерах. В конце статьи будет форма, в которую можно забить необходимые параметры источника, провести расчет онлайн и получить номиналы всех элементов. Для примера возьмем следующие схемы:


Схема 1


Схема 2

Одной из проблем понижающих преобразователей является сложность управления силовым ключом, так как его эмиттер (исток) как правило не подключен к общему проводу. Дальше мы рассмотрим несколько вариантов решения этой проблемы. Пока остановимся на несколько нестандартном включении микросхемы - ШИМ контроллера. Мы используем микросхему 1156EU3 . У этой микросхемы выходной каскад выполнен по классической двухтактной схеме. Средняя точка этого каскада выведена на ножку 14, эмиттер нижнего плеча соединен с общим проводом (ножка 10), коллектор верхнего плеча выведен на ножку 13. Мы соединим ножку 14 с общим проводом через резистор, а ножку 13 подключим к базе ключевого транзистора. Когда верхнее плечо выходного каскада открыто (это соответствует подаче отпирающего напряжения на выход), ток протекает через эмиттерный переход транзистора VT2, ножку 13, верхнее плечо выходного каскада, ножку 14, резистор R6. Этот ток отпирает транзистор VT2.

В таком включении можно применять и контроллеры с открытым эмиттером на выходе. В этих контроллерах нет нижнего плеча. Но оно нам и не нужно.

В нашей схеме в качестве силового ключа используется мощный биполярный транзистор. Подробнее о работе биполярного транзистора в качестве силового ключа . В качестве силового ключа можно использовать составной транзистор , чтобы понизить нагрузку на контроллер. Однако, напряжение насыщения коллектор - эмиттер составного транзистора в разы больше, чем у одинарного. В статье про составной транзистор описано, как рассчитать это напряжение. Если Вы используете составной транзистор, то в форме расчета в конце статьи укажите в качестве напряжения насыщения коллектор - эмиттер VT2 именно это напряжение. Чем выше напряжение насыщения, тем выше потери, так что с составным транзистором потери будут в разы больше. Но решение есть. Оно будет описано далее в разделе о маломощных контроллерах.

Ется выходное напряжение. От каких элементов оно зависит? Также буду очень благодарен, если если подскажете, как правильно рассчитать параметры понижающего преобразователя 100в на 28в 1000 Ватт. Заранее огромное спасибо.
Описание и параметры MOC3061, MOC3062, MOC3063. Применение в тиристорных схемах...


Как сконструировать инвертирующий импульсный преобразователь. Как выбрать частот...

Микроконтроллеры. Составление программы. Инструменты проектирования сх...
Как и с помощью чего программировать и отлаживать микро-контроллеры, проектирова...


Простые схемы импульсных преобразователей постоянного напряжения для питания радиолюбительских устройств

Доброго дня уважаемые радиолюбители!
Сегодня на сайте “ “ мы рассмотрим несколько схем несложных, даже можно сказать – простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного.
Импульсные преобразователи подразделяются на группы:
– понижающие, повышающие, инвертирующие;
– стабилизированные, нестабилизированные;
– гальванически изолированные, неизолированные;
– с узким и широким диапазоном входных напряжений.
Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы – они проще в сборке и не капризны при настройке.

Первая схема.
Нестабилизированный транзисторный преобразователь:
Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка – 2х10 витков, вторичная обмотка – 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Вторая схема.


Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.

Третья схема.
:


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Четвертая схема.
Преобразователь на специализированной микросхеме:
Преобразователь стабилизирующего типа на специализированной микросхеме фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент – дроссель L1.

Пятая схема.
Нестабилизированный двухступенчатый умножитель напряжения:


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Шестая схема.
Импульсный повышающий стабилизатор на микросхеме фирмы MAXIM:
Типовая схема включения импульсного повышающего стабилизатора на микросхеме фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД – 94%, ток нагрузки – до 200 мА.

Седьмая схема.
Два напряжения от одного источника питания :
Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 – накопители энергии.

Восьмая схема.
Импульсный повышающий стабилизатор на микросхеме-2 фирмы MAXIM:
Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД – 90%.

Девятая схема.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ МОРДОВИЯ РЕГИОНАЛЬНЫЙ УЧЕБНЫЙ ОКРУГ

Конкурс исследовательских работ учащихся

«ИНТЕЛЛЕКТУАЛЬНОЕ БУДУЩЕЕ МОРДОВИИ»

Импульсный преобразователь напряжения

Авторы работы: Мамонов Алексей, Голяткин Алексей - студенты специальности «Техническая эксплуатация и обслуживание электрического и электромеханического оборудования»

ГБОУ РМ СПО (ССУЗ) «Саранский электромеханический колледж »

Саранск 2013

Аннотация. В данной работе предлагается и обсуждается принципиальная схема и конструкторское исполнение импульсного повышающего DC-DC преобразователя 12/220В. Разработанный малогабаритный источник постоянного напряжения 220В с питанием от аккумуляторной батареи 12В предназначен для автономного, яркого и экономичного освещения дома, гаража, дачи при недоступности централизованного электроснабжения. Схема преобразователя отличается простотой, надежностью и набором недорогих и доступных элементов.

Введение……………………………………………………………………………..…………...4

1. Теоретическая часть…………………………………………………..………………………5

1.1 Основные типы преобразователей электрической энергии………………….………5

1.2 Импульсные преобразователи напряжения …………...………………….…….……..6

2.Экспериментальная часть………………………………………..……………………...…….9

2.1. Разработка принципиальной электрической схемы повышающего DC-DC преобразователя напряжения 12/220В.……………………………………………..…...….9

2.2 Конструкция, технология изготовления и испытание преобразователя………........10

2.3. Расчет себестоимости преобразователя..……………………………...…………..….11

Заключение………………………………………………………………………..……….……12

Список использованных источников и литературы…………………………..…...…………12

Введение

В настоящее время на рынке электронной аппаратуры предложен большой выбор преобразователей. Они нашли широкое применение в различных отраслях промышленности и в быту. Преобразователи напряжения различаются своими функциональными возможностями, формой выходного напряжения, мощностью на выходе и соответственно ценой.

В данной работе предлагается и обсуждается принципиальная схема и конструкторское исполнение повышающего DC-DC преобразователя 12/220В. Основными критериями при разработке преобразователя являлись малые габариты при высокой удельной мощности, простота технического решения, надежность и низкая цена.

Целью исследования является разработка и изготовление малогабаритного источника постоянного напряжения 220В с питанием от аккумуляторной батареи 12В. Задачами исследования являются:

Изучить и проанализировать существующие типы преобразователей электрической энергии.

Разработать оптимальную электрическую схему и конструкцию преобразователя напряжения на 12-220В.

Изготовить преобразователь по разработанной схеме.

Провести испытание преобразователя, измерить входные и выходные характеристики и сделать выводы о его работоспособности.

Методы исследования: изучение литературы и интернет - ресурсов, наблюдение, обобщение, анализ, классификация, моделирование, прогнозирование, эксперимент, расчет, сравнение, описание.

Практическая значимость работы . Разработанный преобразователь напряжения является простым и недорогим источником автономного питания для автономного, яркого и экономичного освещения дома, гаража, дачи при недоступности централизованного электроснабжения.

Актуальность тематики . Устройство актуально для владельцев неэлектрофицированных садовых домиков, гаражей, где единственным источником электроэнергии может быть аккумуляторная батарея автомобиля.

1. Теоретическая часть

1.1 Основные типы преобразователей электрической энергии.

Преобразователь электрической энергии - это электротехническое устройство, предназначенное для преобразования параметров электрической энергии (напряжения, частоты, числа фаз, формы сигнала). Для реализации преобразователей широко используются полупроводниковые приборы, так как они обеспечивают высокий КПД - важный параметр электротехнических устройств.

Основными видами преобразования электрической энергии являются:

· выпрямление переменного тока - преобразование переменного тока в постоянный (рис.1). Этот вид преобразования наиболее распространенный, так как некоторые потребители электрической энергии могут работать только на постоянном токе (сварочные устройства, электролизные установки и т. д.) или имеют на постоянном токе более высокие технико-экономические показатели, чем на переменном (электропривод системы электрической тяги, линии передачи электрической энергии очень высокого напряжения);

Рис. 2. Принцип действия инвертора.

· преобразование частоты - обычно переменный ток промышленной частоты 50 Гц преобразуется в переменный ток непромышленной частоты (питание регулируемых электроприводов переменного тока, установки индукционного нагрева и плавки металлов, ультразвуковые устройства и т. д.) (рис. 3);



· преобразование числа фаз. Иногда необходимо преобразование трехфазного тока в однофазный (для питания мощных дуговых электропечей) или наоборот, однофазного в трехфазный (электрифицированный транспорт). В промышленности используются трехфазно-однофазные преобразователи частоты с непосредственной частью, в которых наряду с преобразованием промышленной частоты в более низкую происходит и преобразование трехфазного напряжения в однофазное;

· преобразование постоянного тока одного напряжения в постоянный ток другого напряжения (трансформирование постоянного тока) (рис. 4). Подобное преобразование необходимо на ряде подвижных объектов, где источником питания является аккумуляторная батарея или другой источник постоянного тока низкого напряжения, а потребителям требуется постоянный ток более высокого напряжения (например, для питания радиотехнической аппаратуры).



Рис. 4. Принцип действия преобразователя постоянного напряжения.

Существуют и некоторые другие виды преобразования электрической энергии (например, формирование определенной кривой переменного напряжения), в частности, формирование мощных импульсов тока, которые находят применение в специальных установках, регулируемое преобразование переменного напряжения. Все виды преобразований осуществляются с использованием силовых ключевых элементов.

Основные типы полупроводниковых ключей - диоды, силовые биполярные транзисторы, тиристоры , запираемые тиристоры, транзисторы с полевым управлением.

1.2 Импульсные преобразователи напряжения

Для преобразования напряжения одного уровня в напря­жение другого уровня часто применяют импульсные преобразо­ватели напряжения с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД, ино­гда достигающим 95%, и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.

В соответствии с этим известно три типа схем преобразова­телей: понижающие, повышающие и инверти­рующие. Общими для всех этих видов преобразователей являются пять элементов: источник питания, ключевой коммутирующий элемент, индуктивный накопитель энергии (катушка индуктивно­сти, дроссель), блокировочный диод и конденсатор фильтра, включенный параллельно сопротивлению нагрузки. Включение этих пяти элементов в различных сочетаниях по­зволяет реализовать любой из трех типов импульсных преобразо­вателей.

Регулирование уровня выходного напряжения преобра­зователя осуществляется изменением ширины импульсов, уп­равляющих работой ключевого коммутирующего элемента и, соответственно, запасаемой в индуктивном накопителе энергии. Стабилизация выходного напряжения реализуется путем использования обратной связи: при изменении выходного напряжения происходит автоматическое изменение ширины импульсов.

Понижающий преобразователь (рис. 5) содержит после­довательно включенную цепочку из коммутирующего элемента S1, индуктивного накопителя энергии L1, сопротивления нагрузки Rн и включенного параллельно ему конденсатора фильтра С1. Блокировочный диод VD1 подключен между точкой соедине­ния ключа S1 с накопителем энергии L1 и общим проводом.

Рис. 5. Принцип действия понижающего преобразователя напряжения.

При открытом ключе диод закрыт, энергия от источника пи­тания накапливается в индуктивном накопителе энергии. После того, как ключ S1 будет закрыт (разомкнут), запасенная индуктив­ным накопителем L1 энергия через диод VD1 передастся в сопро­тивление нагрузки Rн. Конденсатор С1 сглаживает пульсации напряжения.

Повышающий импульсный преобразователь напряжения (рис. 6) выполнен на тех же основных элементах, но имеет иное их сочетание: к источнику питания подключена последовательная цепочка из индуктивного накопителя энергии L1, диода VD1 и сопротивления нагрузки с параллельно подключенным конден­сатором фильтра С1. Коммутирующий элемент S1 включен между точкой соединения накопителя энергии L1 с диодом VD1 и общей шиной.

Рис. 6. Принцип действия повышающего преобразователя напряжения.

При открытом ключе ток от источника питания протекает через катушку индуктивности, в которой запасается энергия. Диод VD1 при этом закрыт, цепь нагрузки отключена от источни­ка питания, ключа и накопителя энергии. Напряжение на сопро­тивлении нагрузки поддерживается благодаря запасенной на конденсаторе фильтра энергии. При размыкании ключа ЭДС са­моиндукции суммируется с напряжением питания, запасенная энергия передается в нагрузку через открытый диод VD1. Полу­ченное таким способом выходное напряжение превышает напря­жение питания.

Инвертирующий преобразователь импульсного типа содер­жит то же сочетание основных элементов, но в другом их соединении (рис. 7): к источнику питания подключена последо­вательная цепочка из коммутирующего элемента S1, диода VD1 и сопротивления нагрузки Rн с конденсатором фильтра С1. Ин­дуктивный накопитель энергии L1 включен между точкой соедине­ния коммутирующего элемента S1 с диодом VD1 и общей шиной.

Рис. 7. Импульсное преобразование напряжения с инвертированием.

Работает преобразователь следующим образом: при замыкании ключа энер­гия запасается в индуктивном накопителе. Диод VD1 закрыт и не пропускает ток от источника питания в нагрузку. При отключении ключа ЭДС самоиндукции накопителя энергии оказывается при­ложенной к выпрямителю, содержащему диод VD1, сопротивле­ние нагрузки Rн и конденсатор фильтра С1. Поскольку диод выпрямителя пропускает в нагрузку только импульсы отрицатель­ного напряжения, на выходе устройства формируется напряжение отрицательного знака.

Существуют другие разновидности импульсных преобразователей напряжения. Обратноходовой преобразователь - разновидность статических импульсных преобразователей напряжения с гальванической развязкой первичных и вторичных цепей. Основным элементом обратноходового преобразователя является многообмоточный накопительный дроссель, который часто называют трансформатором. Различают два основных этапа работы схемы: этап накопления энергии дросселем от первичного источника электроэнергии и этап вывода энергии дросселя во вторичную цепь (вторичные цепи).

Двухтактный преобразователь - преобразователь напряжения, использующий трансформатор для изменения напряжения источника питания. Преимуществом двухтактных преобразователей является их простота. Двухтактный преобразователь похож на обратноходовой преобразователь, однако основан на другом принципе работы (энергия в сердечнике трансформатора не запасается).

2.Экспериментальная часть

2.1. Разработка принципиальной электрической схемы повышающего DC - DC преобразователя напряжения 12/220В

Принцип действия предлагаемого преобразователя заключается в следующем: постоянный ток от аккумуляторной батареи напряжением 12В преобразуется инвертором в переменный ток того же напряжения, которое повышается трансформатором до 220В и далее выпрямляется выпрямителем. Общий вид структуры реализованного преобразователя показан на рис. 8.

Рис. 8. Структурная схема преобразователя напряжения 12/220В.

Принципиальная схема преобразователя показана на рис. 9. Преобразователь построен по двухтактной схеме. Основой преобразователя является широко известная микросхема ШИМ контроллера TL494. Данная микросхема имеет встроенный задающий генератор, частота которого устанавливается внешней R3C1 цепочкой. Рабочая частота задается следующим образом: уменьшаем сопротивление R3 – увеличиваем частоту. Увеличиваем емкость C1 – уменьшаем частоту и наоборот. В данной схеме частота получается порядка 100КГц. Такая высокая частота преобразования обусловлена необходимостью минимизации габаритов преобразовательного трансформатора.

В схеме используются мощные полевые транзисторы IRFZ46N, которые характеризуются меньшим временем срабатывания и более простыми схемами управления. Вместо них можно использовать IRFZ44N или IRFZ48N.

Повышающий трансформатор в данном преобразователе используется из блока питания компьютера с измененным количеством витков. Соотношение витков в трансформаторе 1:1:20 , где 1:1 – две половинки первичной обмотки (10+10 витков), а 20 – соответственно, вторичная обмотка (200 витков). Для первичной обмотки используется провод диаметром 0,5мм, для вторичной обмотки – 0,3мм.

Выходное напряжение преобразователя снимается с вторичной обмотки трансформатора и выпрямляется по мостовой схеме, выполненной из быстродействующих диодов КД213.


Рис. 9. Принципиальная схема преобразователя напряжения 12/220В.

Защиту схемы от перегрузки и от неправильного подключения питания (полярности «+» и «-») можно реализовать через предохранитель и диод на входе.

2.2. Конструкция, технология изготовления и испытание преобразователя

Внешний вид готового преобразователя напряжения представлен на рис. 10, где 1 – корпус преобразователя, 2 – входные контакты, 3 – выходные контакты, 4 – вентилятор .

http://pandia.ru/text/78/373/images/image015_24.jpg" width="276" height="265 src=">Ацетон" href="/text/category/atceton/" rel="bookmark">ацетоном .

Для предупреждения перегрева транзисторов при длительных режимах работы установлены радиатор и вентилятор.

Готовый преобразователь был испытан для питания энергосберегающих ламп дневного света цокольного типа и ламп накаливания мощностью до 40 Вт (рис. 12).

Рис. 12. Испытание преобразователя.

В результате испытаний получены следующие данные:

Входное напряжение – 12В, выходное напряжение – 220+/-5В, максимальная выходная мощность – 40Вт.

Преобразователь испытывался как в кратковременных, так и в длительных режимах работы (4часа) с энергосберегающими и лампами накаливания разной мощности до 40Вт. Во всех случаях было отмечено нормальное яркое свечение без мерцания.

Сравнительный эксперимент на двух лампах одного номинала, подключенных к преобразователю и к розетке с напряжением 220В – 50Гц, показал визуально одинаковый результат.

2.3. Расчет себестоимости преобразователя

Себестоимость преобразователя по стоимости материалов составляет 356 рублей. Расчет приведен в таблице №1. Для расчета взяты средние розничные цены в специализированных магазинах электроники.

Таблица №1. Расчет себестоимости преобразователя.

Материалы и

запасные части

Количество, шт.

Цена за единицу, руб.

Стоимость, руб.

1. Микросхема TL494

2. Транзисторы IRFZ46N

3. Резистор 2,6 кОм

4. Резистор 1 кОм

5. Резистор 10 кОм

6. Конденсатор 500мкФ

7. Конденсатор 200мкФ

8. Конденсатор 1нФ

9. Трансформатор

Заключение

Разработанный малогабаритный источник постоянного напряжения 220В с питанием от аккумуляторной батареи 12В предназначен для автономного, яркого и экономичного освещения дома, гаража, дачи при недоступности централизованного электроснабжения. Схема преобразователя отличается простотой, надежностью и набором недорогих и доступных элементов.

Список использованных источников и литературы

1. ГОСТ Изделия электротехнические. Термины и определения основных понятий.

2. , Силовая электроника для любителей и профессионалов – М.: СОЛО-Р, 2001. – 327с.

3. http://www. electromonter. info/theory/convert. html