Что делает лампочка в электрической цепи. Простейшая электрическая цепь

ОСНОВНЫЕ ПОНЯТИЯ И ЗАКОНЫ ТЕОРИИ ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

Реальной электрической цепью называется совокупность устройств, предназначенных для передачи, распределения и преобразования энергии. В общем случае электрическая цепь содержит источники электрической энергии, приемники электрической энергии, измерительные приборы, коммутационную аппаратуру, соединительные линии и провода.

Электрическая цепь представляет собойсовокупность связанных определенным образом источников, потребителей (или соответственно активных и пассивных элементов) и преобразователей электрической энергии.

Цепь называют пассивной , если она состоит только из пассивных элементов, и активной , если в ней также содержатся активные элементы.

Источником электрической энергии называют элемент электрической цепи, осуществляющий преобразование энергии неэлектрического вида в электрическую. Например: гальванические элементы и аккумуляторы преобразуют химическую энергию, термоэлементы – тепловую, электромеханические генераторы – механическую.

Потребителем электрической энергии называют элемент электрической цепи, преобразующий электрическую энергию в неэлектрическую. Например: лампы накаливания – в световую и тепловую, нагревательные приборы – в тепловую, электродвигатель – в механическую.

Преобразователем электрической энергии называют устройство, изменяющее величину и форму электрической энергии. Например: трансформаторы, инверторы преобразуют постоянный ток в переменный, выпрямители – переменный ток в постоянный, устройства для преобразования частоты.

Для того чтобы выполнить расчет, необходимо каждое электротехническое устройство представить его схемой замещения . Схема замещения электрической цепи состоит из совокупности идеализированных элементов, отображающих отдельные свойства физически существующих устройств. Так, идеализированный резистор (сопротивление R ) учитывает преобразование электромагнитной энергии в тепло, механическую работу или ее излучение. Идеализированный конденсатор (емкость С ) и катушка индуктивности (индуктивность L ) характеризуются способностью накапливать энергию соответственно электрического и магнитного поля.

Источники, потребители и соединительные провода образуют электрическую цепь, на каждом участке которой может действовать электрическое напряжение и протекать электрический ток. Эти напряжения и токи в общем случае могут быть постоянными и переменными во времени и зависеть от свойств элементов цепи. В данном разделе будут рассматриваться постоянные токи и напряжения.

Реальные электрические цепи изучаются на моделях, которые изображаются с помощью условных обозначений в виде электрических схем .


Напряжение U на элементе электрической цепи обозначается на схеме (рис. 1.1) знаками «+» и «–», имеющими смысл только при совместном рассмотрении, т.к. знак «+» указывает на точку с относительно более высоким потенциалом.

. (1.1)

Единица измерения U вольты (B ).

Ток I в элементе электрической цепи обозначается стрелкой на схеме (рис. 1.2) и указывает направление упорядоченного перемещения положительных электрических зарядов, если ток I выражается положительным числом.

Единица измерения I амперы (А )

Зависимость между током и напряжением на элементе цепи называется вольт-амперной характеристикой (ВАХ) элемента, которая обычно изображается графически. На рис. 1.3 показаны ВАХ потребителей различного типа. Прямолинейные ВАХ (1) и (3) соответствуют линейным элементам, а криволинейная ВАХ (2) – нелинейным элементам.

Мы изучаем в рамках этого пособия только линейные цепи, для которых отношение const = k или его отклонение от постоянной величины невелико. В данном случае, когда ВАХ изображается линией, близкой к прямой, считают, что потребитель подчиняется закону Ома, согласно которому напряжение и ток пропорциональны друг другу. Этот коэффициент пропорциональности k называют электрическим сопротивлением элемента R , которое измеряется в омах (Ом).

В качестве потребителя в теории электрических цепей постоянного тока выступает резистор, характеризующийся сопротивлением (R ), для которого справедлив закон Ома:

или , . (1.3)

Обозначение резистора на электрических схемах изображено на рис. 1.4.

Величину, обратную сопротивлению , называют проводимостью, которая измеряется в сименсах (См).

Закон Ома можно представить через проводимость:

. (1.4)

В пассивных элементах ток течет от точек с относительно большим потенциалом к точкам, имеющим относительно меньший потенциал. Поэтому на рис. 1.5 стрелка тока направлена от «+» к «–», что соответствует закону Ома в форме

. (1.5)

Для обозначений, принятых на рис. 1.6, закон Ома должен быть записан в следующей форме: .

Таким образом, в ТОЭ потребитель моделируется идеальным потребителем, свойства которого определяются значением единственного параметра (R или G ).

Источники энергии моделируются с помощью источника ЭДС (Е ), или источника напряжения, и источника тока (J ). ВАХ источников энергии – это внешние характеристики, обычно имеющие ниспадающий характер, т.к. в большинстве случаев с увеличением тока напряжение источника уменьшается.

Идеализированный источник напряжения – это элемент цепи, напряжение которого не зависит от тока и является заданной постоянной величиной, ему соответствует на рис. 1.7 сплошная ВАХ.

В действительности мы имеем дело с реальными источниками напряжения, которые отличаются от идеальных источников тем, что их напряжение с ростом потребляемого тока уменьшается. ВАХ реального источника напряжения представлена на рис. 1.7 пунктирной линией, тангенс угла наклона которой равен внутреннему сопротивлению источника напряжения R 0 . Любой реальный источник при сопротивлении нагрузки R >> R 0 может быть приведен к идеализированному следующим образом (рис.1.8):

U 12(реал) = IR – E ,

E реал = E -IR (1.6)

Таким образом, свойства источника ЭДС или реального источника напряжения определяются двумя параметрами – вырабатываемой ЭДС Е и внутреннимсопротивлением R 0 .

Идеализированный источник тока – это элемент цепи, ток которого не зависит от напряжения и является заданной постоянной величиной, ему соответствует сплошная ВАХ на рис. 1.9.

У реального источника тока с ростом напряжения вырабатываемый ток уменьшается. ВАХ реального источника тока представлена на рис. 1.9 пунктирной линией, тангенс угла наклона которой равен внутренней проводимости источника тока G 0 . Любой реальный источник тока может быть приведен к идеализированному следующим образом (рис. 1.10):

, (1.7)

где J , G 0 – постоянные параметры.

Таким образом,свойства источника задающего тока определяются двумя параметрами: задающим током J и внутренней проводимостью G 0 . Чем меньше G 0 , тем ближе характеристика реального источника тока к идеализированному.

Поскольку внутренние сопротивления реальных источников всегда можно отнести к потребителям цепи, далее рассматриваются только идеализированные источники напряжения и тока.

Провода, связывающие потребители и источники, по своей сущности также относятся к потребителям энергии. Однако часто считают, что провода выполняют лишь соединительные функции и служат лишь для того, чтобы показать, как связаны между собой отдельные элементы цепи. Сопротивления проводов, если ими нельзя пренебречь, учитываются включением в соответствующих местах цепи дополнительных потребителей.

Таким образом, в теории линейных электрических цепей объектом изучения является расчетная модель, состоящая из потребителей и идеализированных источников, конфигурация и свойства элементов которой определены условиями задачи.

При решении задач большое значение придается структуре электрической цепи (топологии) , определяемой характером связей между элементами.

Любого человека, если он, конечно, не отказался от благ цивилизации, окружает множество электротехнических устройств. Далеко за примерами ходить не нужно: телевизор, телефон, самая обыкновенная и пр. Основой всех подобных устройств является электрическая цепь. Многие литературные источники дают похожие определения, правда, применительно к простейшей разновидности. Почему так, ведь современные электронные аппараты настолько сложны, что их обслуживание доверяют компьютеризированным системам? Действительно, странно, особенно если вспомнить центральные процессоры персональных компьютеров с их миллионами транзисторов - в них также присутствует электрическая цепь Причина вышеуказанного упрощения определения состоит в том, что любая, даже сложнейшая, электрическая схема может быть представлена в виде большого количества простейших составляющих. Кстати, именно поэтому появляется возможность выполнять необходимые расчеты, используя известные формулы.

Итак, с простым и сложным определились. Теперь поясним, что же такое электрическая цепь. Для того чтобы было более понятно, рассмотрим простейший пример - электрический фонарик. Причем не тот, в котором используется управляющая микросхема (переключение режимов, мигание и пр.), а самый обычный - с батарейкой, лампочкой и тумблером включения. Он состоит из корпуса, в котором размещены сам источник отсек для батарейки с двумя контактами. Вставив батарейку в корпус и щелкнув выключателем, можно добиться яркого направленного свечения лампы. Совершив эти действия, мы сформировали как раз то, что называется электрическая цепь (в профессиональном сленге - собрали схему). электроэнергии (батарейки) устремился по пути: контакт положительного полюса - проводник, тумблер - лампа - отрицательный полюс. Это называется "простейшая электрическая цепь". В примере с фонариком элементов три: источник ЭДС, тумблер и лампа. Стоит отметить, что движение электронов (ток) возможно только по замкнутому контуру, поэтому если тумблер отключить и цепь разорвать, то оно исчезнет, хотя напряжение источника останется. Кстати, все процессы могут быть описаны и рассчитаны не только через ток, но также посредством напряжения, мощности, ЭДС.

Универсальный инструмент расчета - закон Ома. В данном случае он выглядит как:

где I - ток, Амперы; E - ЭДС, Вольты; R - сопротивление лампочки, Ом; r - сопротивление источника ЭДС, Ом. В используемом примере влияние и тумблера не учитывается, так как оно ничтожно мало.

Итак, электрическая цепь и ее элементы могут включать в себя источник питания, резисторы, конденсаторы, полупроводниковые компоненты и пр. Причем все это должно быть соединено воедино проводниками, формирующими непрерывный путь для прохождения тока.

Простые цепи подразделяются на неразветвленные и разветвленные. В первом случае по всем составляющим элементам проходит один и тот же ток (правило для потребителей). Во втором же случае дополнительно прибавляется одна или несколько ветвей, соединенных с рассматриваемым простейшим контуром посредством узлов. При этом формируется смешанное соединение элементов цепи, поэтому значение тока, протекающего в каждой ветви, различно. Здесь ветвь - это участок электрической цепи, по всем элементам которого течет один и тот же ток, а противоположные концы которого подключены в двух узлах. Соответственно, узел - это точка электрической цепи, в которой сходятся три или более ветвей. На принципиальных схемах узлы часто как раз и обозначают точками, что упрощает восприятие (чтение).

Электрической цепью называют совокупность соединенных друг с другом источников и приемников электрической энергии, по которым может протекать электрический ток.

Простейшая электрическая цепь состоит из источника, одного или нескольких последовательно соединенных приемников электрической энергии (нагрузок, потребителей) и соединительных проводов(рис. 1.2). Рис. 1.2

Источник питания образует внутреннюю часть цепи, а потребитель – совместно с соединительными проводами, измерительными приборами и коммутирующими аппаратами – внешнюю часть цепи.

Когда внешняя и внутренняя части цепи образуют замкнутый контур, в цепи возникает электрический ток.

Величина, или сила тока определяется количеством электричества (зарядом), проходящим через поперечное сечение проводника в единицу времени:

I =,А - для постоянного тока; ί =,А - для переменного тока.

Прохождение электрического тока в цепи связанно с процессами непрерывного преобразования энергии в каждом из ее элементов.

В процессе преобразования других видов энергии в электрическую в источнике питания возбуждается ЭДС Е ,В .

Внешняя цепь и сам источник энергии обладают сопротивлением для прохождения электрического тока.

Физическая природа омического сопротивления R – тепловое движение атомов и молекул тела (сверхпроводимость). Величина сопротивления зависит от материала, формы и размеров проводника:

R = , Ом . (1.8)

Величина, обратная сопротивлению, называется проводимостью:

=, См . (1.9)

ЭДС Е напряжение U , ток I , сопротивление R в простейшей цепи связаны законом Ома:

I =. (1.10)

Для цепи на рис. 1.2:

I =

. (1.11)

Из (1.11) следует уравнение электрического состояния цепи (рис.1.2):

Е =I R 0 +I R= I R 0 +U ; (1.12)

Е =U+I·R 0. (1.13)

Из (1.13) следует, что Е >U на величину падения напряжения на внутреннем сопротивлении:I R 0. (1.14)

На основании определения напряжения, как работы по перемещению заряда +1 можно записать:

А= U q = UIt ; (1.15)

P ==U I , (1.16)

где А – работа тока,Дж ;Р – мощность тока, Вт .

Если в участке цепи электрическая энергия превращается только в тепло, то формулы (1.15) и (1.16) можно записать иначе (заменой U =I R ):

А= I 2 Rt иP = I 2 R .

Это закон Джоуля – Ленца (коэффициент 0,24 принимается для перевода А изДж вкал ).

Для расчета цепей выбирается условно положительное направление Е, U , I и оно обозначается стрелкой (рис. 1.3).

Ток в простейшей цепи совпадает по направлению с ЭДС. В сложной цепи направление тока в какой-то ветви всегда неочевидно до расчета, поэтому оно выбирается произвольно. Стрелка напряжения U направляется от точек более высокого потенциала к точкам более низкого.

1.3. Режимы работы электрической цепи постоянного тока

Наиболее характерными является 4 режима: номинальный, холостого хода, короткого замыкания и согласованный.

    Номинальный режим источников и приемников в электрической цепи характеризуется тем, что напряжения, токи и мощности их соответствуют тем значениям, на которые они рассчитаны заводами изготовителями.

    Режим холостого хода. Ток источников и приемников равен нулю (I =0).

    Режим короткого замыкания. Напряжение на участке равно нулю (U кз =0), приемник шунтован очень малым сопротивлениемR →0.

    Согласованный режим – когда пассивный элемент внешней цепи работает с максимальной мощностью при данном источнике.

Легко получить условия согласованного режима. Запишем уравнение электрического состояния простейшей цепи (рис. 1.1):

Е =U+R 0 I , где U=I·R . (1.17)

R – сопротивление внешней цепи,

R 0 – сопротивление источника.

Умножим (1.17) на I :

EI = UI + R 0 I 2 ,

P 1 = P 2 + P 0 ,

Р 1 – мощность источника,

Р 2 мощность передаваемая во внешнюю цепь,

Р 0 – мощность потерь внутреннего источника.

Р 2 = U I = RI 2 = R

– имеет максимум,

когда величина:

– максимальна т.е.:

(R 0 +R) 2 –2R(R 0 +R)= 0, R 0 +R–2R= 0, R=R 0 .

Следовательно, внешняя цепь и источник работают в согласованном режиме при R = R 0 .

Кпд в согласованном режиме равен:

η ==

=

=0,5.

С цепями согласованного режима приходится иметь дело тогда, когда низкий кпд не имеет решающего значения из-за малой мощности цепи и когда вопрос максимальной мощности в нагрузке преобладает над соображениями экономического порядка.

Абсолютно любые электрические устройства можно подключить к питанию только посредством линейного или параллельного соединения. Когда элементы соединяются параллельно, ток бежит сразу по нескольким направлениям. Другими словами — каждое элемент в цепи имеет собственную цепь питания. Самая главная особенность параллельного соединения — это удобство работы. Если какой-нибудь элемент из цепи сгорит, то мы быстро определим его и заменим, поскольку при поломке одного элемента, ток не перестает поступать к другим. Также некоторое количество устройств не вызывает падений мощности. Опыт в сборке электрических цепей очень полезен для понимания принципов работы электрического тока. Как собрать электрическую цепь самому? Давайте попробуем разобраться.

Создаем электрическую цепь

При выполнении проекта следует учитывать возраст и опыт человека, который этим будет заниматься. Подобные задания могут послужить в качестве хорошего и интересного эксперимента для учеников средней школы, изучающих законы распределения электрического тока. Данный метод может послужить базой для человека, который берется за сборку цепи впервые.

Сам эксперимент можно классифицировать по двум разным видам проведения.

Используем для создания фольгу

Для того чтобы собрать электрическую цепь в домашних условиях, вам потребуется сделать следующее:

  • Обзаведитесь источником питания. Наиболее экономичный и распространенный вариант — самая обычная батарейка.

Важно! Можно взять аккумулятор на девять вольт для такого задания.

  • Найдите электрические устройства, которые будут использоваться в ходе эксперимента. Эти компоненты вы и будете подсоединять к источнику питания.

Важно! Наш пример требует наличия двух лампочек накаливания или проводящих диодов.

  • Нужно позаботиться о проводниках. Сегодня в качестве проводника будет использована алюминиевая фольга. Именно посредством этой фольги будет подаваться электрический ток с элемента питания на потребители.
  • Нарежьте фольгу на четыре узких полоски: две штуки по 20 сантиметров и две — по 10 сантиметров.

Важно! Их ширина должна соответствовать диаметру трубочки для питья.

  • Полосы подлиннее необходимо соединить с батарей. Одну с плюсом, а другую — с минусом соответственно.
  • Теперь стоит задуматься о подключении потребителей электроэнергии. Нужно взять два оставшихся проводника и намотать одним концом на 20-сантиметровый проводник. Одну из полосок следует присоединять недалеко от конца длинного “провода”, а вторую полоску — сантиметров на 7-8 ближе с элементу питания. Оборачиваем свободные концы коротких “проводов” вокруг лампочек.

Важно! Если не получается зафиксировать качественно, то воспользуйтесь изолентой.

  • Если вы избежали разрывов цепи, то при соединении всех элементов лампочки должны начать светиться. Попробуйте коснуться лампочками накаливания второго длинного проводника, что идет от минуса батареи — лампочки засветятся еще ярче.

Вы узнали, как сделать электрическую цепь с использованием алюминиевой фольги. Давайте попробуем другие методы.


Используем провода и выключатель

Данный проект — это усложненная вариация первого. Даже тут не должно возникнуть каких-либо трудностей, поскольку такая задача выполняется очень просто. Единственное, что вам потребуется, так это наличие проводов и ключа (выключатель). Такой урок принесет хороший опыт тем пользователям, которые только постигают азы.

Важно! Данный метод требует зачистки концов проводов. Будьте осторожны в своих действия.

Порядок работ:

  • Сперва вам нужно подготовить все необходимое для создания этого проекта. Стоит найти следующее: аккумуляторную батарею, проводники, ключ и хотя бы два потребителя энергии.

Важно! Для источника питания опять прекрасно подойдет батарейка на 9 вольт, а выключатель вы без труда сможете найти в любом магазине хозяйственных товаров.

  • Лучше всего найти медный провод для передачи тока. Нарежьте его на несколько отрезков не сильно большой длины.

Важно! На всю схему можно взять 70 сантиметров.

  • В данном методе опять будут использованы лампочки, но никто не мешает вам взять потребитель другого рода.
  • Подготовим провода: разрезаем проволоку на пять одинаковых кусков с размерами в 20 сантиметров каждый. Необходимо удалить по 2 см изоляции с каждого из их концов.

Важно! Для проведения таких манипуляций прекрасно подойдет стриппер, но его отсутствие можно компенсировать простыми ножницами или кусачками.

  • Соедините первый потребитель электроэнергии с источник питания. Для этого необходимо соединить один из проводов с его плюсом, а второй конец подключить к одной из используемых лампочек.
  • Сейчас необходимо присоединить ключ к питательному элементу. Для соединения используйте один из оставшихся кусков провода. Соедините его конец с минусом источника, а второй — подключите к выключателю.
  • Сам выключатель нужно соединить с первой лампочкой при помощи другого куска проводника. Конец проволоки подсоедините к ключу, а потом — к правой стороне первого потребителя.
  • Берем вторую лампу, при помощи последнего куска провода прикрепляем его с левой стороны к первой лампочке, а со второй — к левой стороне другой лампочки.
  • Последним оставшимся проводником соедините правую сторону первой лампочки и правую сторону второй лампочки. Цепь готова.
  • Остается замкнуть ключ и понаблюдать за тем, как две лампочки начнут светиться.

Теперь вы знаете, как сделать электрическую цепь двумя разными методами. Подобные эксперименты помогают понять суть физических процессов и дают опыт в будущей работе с электрическими цепями.

Для стопроцентной фиксации можете воспользоваться изолентой или паяльником.

Важно! Применение последнего требует от вас базовых навыков в обращении с паяльником. Не давайте в руки устройство тем, кто не понимает как с ним обращаться.

Предостережения

  • Ни в коем случае не проводите никаких манипуляций с высоким вольтажом и большой силой тока, если вы не имеете надлежащей защиты от поражающего воздействия.
  • Во время зачистки нужно внимательно следить за тем, не повредили ли вы сам провод. Лучший инструмент для этого дела — стриппер.
  • Особенно осторожно обращайтесь с потребителями электрического тока, если используете в качестве них лампочки. Такие элементы очень хрупки и неосторожное обращение может привести к порезам или удару током.

Радиолюбителями не рождаются. Удачи во всех начинаниях!