Сопротивление изоляции мом. Измерения сопротивления изоляции силовых кабельных линий, электрических аппаратов, вторичных цепей и электропроводки

Любое электротехническое изделие характеризуется целым рядом параметров. Для кабелей одним из основных является сопротивление изоляции. Существуют определенные нормы, которые обязательно учитываются при проектировании и монтаже, а также в процессе эксплуатации и проведения ТО трасс коммуникаций.

Каковы они нормы сопротивления изоляции кабеля? Дело в том, что по данному вопросу нередко встречаются разночтения. Это вызвано, по мнению автора, несколькими факторами.

Во-первых, кабель – понятие обобщенное. К этой группе изделий относятся образцы, используемые при прокладке линий силовых, сигнальных и телефонных. Кабеля могут быть коаксиальными (радиочастотными), контрольными, распределительными и общего назначения. То есть вариантов конструктивного исполнения защитных оболочек, отличающихся, в том числе, и толщиной, множество.

Во-вторых, на изготовление изоляции идут самые разные материалы – резина, пластики, даже пропитанная особым образом бумага. Хотя в более современных кабелях защита, как правило, комплексная, то есть сочетающая различные диэлектрические слои.

В-третьих, о сопротивлении какой изоляции идет речь – внешней оболочки или поверхностного покрытия жил?


В-четвертых, следует принимать во внимание и специфику монтажа и дальнейшей эксплуатации конкретного кабеля. Например, способ прокладки трассы – открытый или закрытый. Где она укладывается – в грунте, в лотках (вариантов достаточно). Чем характеризуется окружающая среда – предельная величина и перепады температуры, влажности, агрессивность и так далее.

Сопротивление изоляции – нормы для кабелей

Все значения – в МОм.

Кабеля силовые

  • Высоковольтные (более 1 000 В). Для них нормы не существует. То есть, чем сопротивление изоляции выше, тем лучше. Принято считать, что его значение не должно быть менее 10.
  • Низковольтные (до 1 000 В). По сути, речь идет об электропроводках и вторичных цепях различных установок. Минимальный предел значения сопротивления изоляции – 0,5. Более подробную информацию по данному вопросу можно найти в ПУЭ 7-ой редакции (табл. 1.8.34 и п. 1.8.37).


Кабеля контрольные, сигнальные, общего назначения

Это довольно большая группа изделий. К ней можно отнести кабеля, монтируемые для цепей управления, автоматики, питания эл/приводов, подключения защитных, распределительных устройств и так далее. Для них нормой считается, если сопротивление изоляции не ниже 1. Но это общепринятый показатель. Точное значение, в зависимости от , следует искать в его сопроводительной документации.

Для кабелей связи нормы сопротивления несколько иные, более «жесткие». Для линий городских н/ч – не менее 5, магистральных – 10 (МОм/км).

Если кабель имеет наружную оболочку из алюминия с покрытием из ПВХ, то норма сопротивления выше и равняется 20.

Примечание. ПУЭ оговаривает, что измерение сопротивления изоляции проводится мегаомметром с напряжением индуктора:

  • для кабелей в цепях не более 500 В – 500;
  • до 1 000 В – 1 000;
  • все остальные – 2 500.

Специалистам не нужно объяснять, что все требования к сопротивлению изоляции указываются в технических заданиях, ГОСТ и СНиП на определенный вид работы. Его величину несложно узнать по паспорту кабеля, а при необходимости контроля состояния изделия произвести соответствующее измерение. Специфика этой операции оговорена в п. 1.8.7. ПУЭ (7-я редакция).

В быту для оценки степени износа изоляции силового кабеля можно воспользоваться следующей таблицей, которая отражает ориентировочные усредненные нормы.


Так как непрофессионал не в состоянии учесть всех нюансов конструктивного исполнения изделия и его использования, этого, как правило, вполне достаточно, чтобы понять, стоит ли закладывать данный образец или он уже непригоден к эксплуатации. То есть отбраковать. Ну а если есть определенные сомнения, то нелишне проконсультироваться с профильным специалистом.

Цель проведения измерений

Измерение сопротивления изоляции кабельных линий, электропроводок и электрооборудования производится с целью выявления дефектов изоляции.

1. Общие положения

1.1. Сопротивление изоляции силовых кабельных линий до 1000 В измеряется мегаомметром на напряжение 2500В в течение 1 минуты, при этом одновременно происходит испытание повышенным напряжением. Сопротивление изоляции должно быть не менее 0,5 МОм.

1.2. Сопротивление изоляции электродвигателей переменного тока напряжением до 660 В производится мегаомметром напряжение 1000В. Сопротивление изоляции должно быть в холодном состоянии не менее 1 Мом, а при температуре 60 градусов - 0,5 МОм.

1.3. Измерение сопротивления обмоток и изоляции бандажей машин постоянного тока (обмоток относительно корпуса и бандажей относительно корпуса и удерживаемых ими обмоток) вместе с соединёнными с ними цепями и кабелями производится при номинальном напряжении до 500 В мегаомметром на 500В, а при номинальном напряжении выше 500В мегаомметром на 1000В. Сопротивление изоляции должно быть не менее 0,5 Мом.

1.4. Изоляция бытовых стационарных электроплит измеряется мегаомметром на 1000В не реже 1 раза в год в нагретом состоянии плиты. Сопротивление изоляции должно быть не менее 1 Мом.

1.5. Сопротивление изоляции электрооборудования кранов или лифтов производится не реже 1раза в год. Сопротивление изоляции должно быть не менее 0,5 МОм.

1.6. Изоляция силовых и осветительных электропроводок измеряется мегаомметром на 1000В при снятых плавких вставках на участке между снятыми предохранителями или за последними предохранителями между любым проводом и землёй, а также между двумя проводами. При измерении в силовых цепях должны быть отключены электроприёмники. При измерении в силовых цепях должны быть отключены электроприёмники, а также аппараты, приборы и т.д. При измерении сопротивления изоляции в осветительных цепях лампы должны быть вывернуты, а штепсельные розетки, выключатели и групповые щитки присоединены. В цепях освещения от групповых щитков до светильников допускается не выполнять измерения сопротивления изоляции, если для проверки изоляции требуется значительный объём работ по демонтажу схемы и эти цепи защищены предохранителями. Проверка состояния таких цепей, приборов и аппаратов должна проводиться путём тщательного внешнего осмотра не реже 1 раза в год. При заземлённой нейтрали осмотр производится совместно с проверкой обеспечения срабатывания защиты (измерением тока однофазного КЗ).

Сопротивление изоляции электропроводок в особо сырых и жарких помещениях, в наружных установках, а также в помещениях с химически активной средой измеряется в полном объёме не реже 1 раза в год. Сопротивление изоляции должно быть не менее 0,5 МОм.

1.7. Распределительные устройства, щиты и токопроводы. Сопротивление изоляции измеряется для каждой секции распределительного устройства мегаомметром на 1000В. Производится по возможности одновременно с испытанием электроустановок силовых и осветительных цепей, присоединенных к устройствам, щитам или токопроводам. Сопротивление изоляции должно быть не менее 0,5 МОм.

1.8. Вторичные цепи управления, защиты, измерения, автоматики и телемеханики. Допускается не выполнять измерения сопротивления изоляции, если для проверки требуется значительный объём работ по демонтажу схемы и эти цепи защищены предохранителями или расцепителями, имеющие обратнозависимые от тока характеристики. Проверка состояния таких цепей, приборов и аппаратов должна производиться путём тщательного внешнего осмотра не реже 1 раза в год. При заземлённой нейтрали осмотр проводится совместно с проверкой обеспечения срабатывания защиты (измерением тока КЗ).

1.9. Каждое присоединение вторичных цепей и цепей питания приводов выключателей и разъединителей.

Измерение сопротивления изоляции производится мегаомметром на 1000В со всеми присоединёнными аппаратами (катушки приводов, контроллеры, реле, приборы, вторичные обмотки трансформаторов тока и напряжения и т.п.). Сопротивление изоляции должно быть не менее 1 МОм.

1.10. Конкретные сроки измерения (согласно п. 1.6, указанных в п. 1.2 инструкции норм) определяет ответственный за электрохозяйство на основе вышеназванных норм, ведомственной или местной системы ППР в соответствии с типовыми и заводскими инструкциями в зависимости от местных условий и состояния электроустановок.

2. Приборы и средства измерений

Измерения проводятся мегаомметром типа Е6-24.

3. Квалификационный и количественный состав бригады

Работы по измерению сопротивления изоляции проводятся по распоряжению бригадой в составе не менее двух человек, из которых производитель работ должен иметь группу по электробезопасности не ниже четвертой, а член бригады не ниже третьей. Оба члена бригады должны иметь допуск к проведению электрических испытаний.

4. Порядок проведения измерений

4.1. Измерение сопротивления изоляции производится между всеми фазами и между каждой фазой и нулём по участкам между коммутирующими аппаратами, начиная от силового щита и кончая оконечным потребителем.

4.2. За сопротивление изоляции принимается значение сопротивления, измеренного в течение 1 мин.

5. Последовательность проведения испытаний

5.1. Присоединить соединительные провода к зажимам «Rx» мегаомметра

5.2. Для измерения сопротивления изоляции между фазами А и В (Ra-в) присоединить один измерительный провод к фазе А, измеряемого участка, а другой к фазе В, нажать и удерживать кнопку "Rx" или использовать режим "захвата" кнопки "Rx", при этом на индикаторе появится результат измерения.

5.3. По окончании измерения автоматически начинается снятие остаточного напряжения с объекта, текущее значение которого отображается прерывистым свечением до того момента, пока оно не снизится до 40 В.

5.4. Для измерения сопротивления изоляции R a - с отсоединить соединительный провод от фазы В и присоединить его к фазе С. Измерить Ra - с по п. 5.2.

5.5. Отсоединить соединительный провод А и присоединить его к фазе В. Измерить r в - с по п. 5.2.

5.6. Отсоединить соединительный провод от фазы В и присоединить его нулю. Измерить Re - 0 по п. 5.2.

5.7. Отсоединить соединительный провод от фазы С и присоединить его к фазе В. Измерить rb - 0 по п. 5.2.

5.8. Отсоединить соединительный провод от фазы В и присоединить его к фазе А. Измерить Ra - 0 по п. 5.2.

5.9. Отсоединить соединительные провода от фазы А и нуля.

5.10. Провести измерения по п. 5.2 - 5.9 на остальных участках электроустановки.

6. Мероприятия по безопасному ведению работ

6.1. Измерение сопротивления изоляции электроустановок должно проводиться специально обученным персоналом электролаборатории

6.2. Состав бригады при производстве измерений см. п. 3.

6.3. Производитель работ и члены бригады должны иметь при себе именные удостоверения установленной формы о проверке знаний техники безопасности, и присвоенной группе по электробезопасности с отметкой на право проведения измерений в графе свидетельства на право проведения специальных работ.

6.4. Бригада должна пройти инструктаж по электробезопасности с учётом особенности электроустановки, на которой ей предстоит работать. Производитель работ, кроме того, должен пройти инструктаж по схеме электроснабжения установки.

Инструктаж оформляется записью в журнале инструктажа с подписями инструктируемых лиц и лица, проводящего инструктаж.

Инструктаж должно проводить лицо с группой 5 из административно-технического персонала, или с группой 4 из оперативного или оперативно-ремонтного персонала эксплуатирующей организации.

6.5. Подготовка рабочего места и допуск к работе осуществляется оперативным персоналом.

6.6. Подключение мегаомметра к измеряемой цепи и измерение сопротивления изоляции должны проводиться при отключенном напряжении с соблюдением всех правил по охране труда при эксплуатации электроустановок, т.е. с вывешиванием на проводе коммутирующего аппарата плаката «Не включать. Работают люди» и с проверкой отсутствия напряжения между всеми фазами и каждой фазой и нулём. При необходимости должны быть приняты меры по ограждению неизолированных токоведущих частей соседних электроустановок, находящихся под напряжением и противоположного конца испытываемого кабеля.

7. Оформление результатов измерений

Результаты измерений заносятся в протокол. На основании сравнения результатов измерений с требованиями п.п.1.3-1.10 настоящей методики делается заключение о соответствии сопротивления изоляции требованиям ПУЭ и ПТЭЭП. Протоколы сводятся в отчёт, который утверждается руководителем лаборатории. К отчёту прилагается дефектная ведомость, в которую заносятся все дефекты, обнаруженные при измерении.

8. Перечень нормативной документации

8.1. ГОСТ Р 50571.16-2007 Электроустановки зданий. Часть 6. Испытания.

8.2. Правила технической эксплуатации электроустановок потребителей (утвержденные приказом № 5 от 13.01.2003 министерства энергетики Российской Федерации, вводятся в действие с 1-го июля 2003г.).

8.3. Правила устройства электроустановок. Шесток издание, переработанное и дополненное, с изменениями Главгосэнергонадзор России, Москва, Санкт-Петербург 2001. Седьмое издание: радел 1 - главы 1,1; 1,2; 1,7; 1,9. Москва 2002; глава 1,8. Москва 2004; раздел 2 – главы 2,4; 2,5. Москва 2003; раздел 4 – главы 4,1; 4,2. Москва 2004; раздел 6. Москва 2002; раздел 7 – главы 7,1; 7,2 Москва 2002; 7,5; 7,6; 7,10 Москва 2002.

8.5. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок. ПОТ Р М – 016 –2001. РД 153-34.0 – 03.150 – 00.

8.4. Инструкция по применению и испытанию средств защиты, используемых в электроустановках (Москва 2004г).

8.7. Объёмы и нормы испытания электрооборудования. РД 34.45-51.300-97. Москва, 2001г

8.8. Государственный стандарт Российской Федерации ГОСТ Р МЭК 449-96.

8.9. Правила технической эксплуатации электроустановок потребителей (утверждены приказом №6 от 13.01.2003 министерства энергетики Российской Федерации, введены в действие с 1-го июля 2003г.).

9. Нормируемые значения измеряемых величин

Измеренные значения сопротивлений изоляции должны удовлетворять требованиям, приведенным в таблице 1 Объёмы и нормы испытания электрооборудования. РД 34.45-51.300-97. Москва, 2001г табл. 2.6.1, в таблице.2. ПУЭ табл 1.8.34., в таблице 3. ПТЭЭП табл 37

Таблица 1

Испытуемый элемент

Напряжение мегаомметра, В

6. Распределительные устройства 4) , щиты и токопроводы

4) Измеряется сопротивление изоляции каждой секции распределительного устрой­ства.

Таблица 2

Испытуемый элемент

Напряжение мегаомметра, В

Наименьшее допус­тимое значение сопротивления изоляции, МОм

1 . Шины постоянного тока на щитах управления

и в распределительных устройствах (при отсоединенных цепях)

2. Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъе­динителей 1) .

3. Цепи управления, защиты, автоматики и измерений, а также цепи возбуждения машин постоянного тока, присоединенные к силовым цепям

4. Вторичные цепи и элементы при питании от отдельного источника или через разделительный трансформатор, рассчитанные на рабочее напряжение 60 В и ниже 2)

5. Электропроводки, в том числе осветительные сети 3)

6. Распределительные устройства 4) , щиты и токопроводы (шинопроводы)

1) Измерение производится со всеми присоединенными аппаратами (катушки приво­дов, контакторы, пускатели, автоматические выключатели, реле, приборы, вторичные об­мотки трансформаторов тока и напряжения и т.п.).

2) Должны быть приняты меры для предотвращения повреждения устройств, в особен­ности микроэлектронных и полупроводниковых элементов.

3) Сопротивление изоляции измеряется между каждым проводом и землей, а также между каждыми двумя проводами.

4) Измеряется сопротивление изоляции каждой секции распределительного устройства

Значение испытательного напряжения для цепей релейной защиты, электроавтоматики и других вторичных цепей со всеми присоединенными аппаратами (катушки приводов, автоматы, магнитные пускатели, контакторы, реле, приборы и т.п.) принимается равным 1000 В 1 . Осветительные сети испытываются указан­ным напряжением в тех случаях, когда проводка имеет пониженный по сравне­нию с нормой уровень изоляции. В остальных случаях испытание может быть произведено мегаомметром на напряжение 2500 В.

Продолжительность приложения испытательного напряжения составляет 1 мин.

Вторичные цепи, рассчитанные на рабочее напряжение 60 В и ниже, а также цепи, содержащие устройства с микроэлектронными элементами, напряжением 1000 В частоты 50 Гц не испытываются.

При текущем ремонте (Т) допускается испытание выпрямленным напряжением 2500 В с использованием мегаомметра или специальной установки.

Таблица 3

Минимально допустимые значения сопротивления изоляции элементов электрических сетей напряжением до 1000 В (ПТЭЭП табл.37)

Наименование элемента

Напряжение мегаомметра, В

Сопротивление изоляции, МОм

Примечание

Электроизделия и аппараты на номинальное напряжение, В:

свыше 50 до 100

свыше 100 до 380

Должно соответствовать указаниям изгото­вителей, но не менее 0,5

При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы

Распределительные устройства, щиты и токопроводы

Не менее 1

Измерения производятся на каждой сек­ции распределительного устройства

Электропроводки, в том числе осветительные сети

Не менее 0,5

Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения произво­дятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и вык-лючатели присоединены

Вторичные цепи распределительных устройств, цепи питания приводов вы­ключателей и разъединителей, цепи управления, защиты, автоматики, те­лемеханики и т. п.

Не менее 1

Измерения производятся со всеми при­соединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)

Краны и лифты

Не менее 0,5

Производится не реже 1 раза в год

Стационарные электроплиты

Не менее 1

Производится при нагретом состоянии плиты не реже 1 раза в год

10. Периодичность испытаний

1.2.Периодичность и нормы измерений регламентируются нормами испытаний электрооборудования и аппаратов электроустановок потребителей (Приложение 3 ПТЭЭП). Измерение сопротивления изоляции проводится перед вводом в эксплуатацию, после переустройства и капитального ремонта электроустановки. Измерение сопротивления изоляции в действующих электроустановках проводятся в соответствии с утвержденными графиками ППР, но не реже 1-го раза в год:

Для вторичных цепей релейной защиты и автоматики;

Для электропроводок в особо сырых, жарких помещениях, наружных установках, а также их распределительных щитков;

Для бытовых стационарных электроплит.

Для ручного электроинструмента, переносных светильников со вспомогательным оборудованием – не реже 1 раза в 6 месяцев

Электроустановки, аппараты, вторичные цепи, нормы испытаний которых не определены в разделах 2-27(ПТЭЭП), и электропроводки напряжением до 1 000 В

К, Т, М - производятся в сроки, устанавливаемые системой ППР.

Наименование испытания

Вид испыта­ния

Нормы испытания

Указания

1.Измерение сопротивления изоляции

2. Испытание повышенным напряжением промышленной частоты электротехнических изделий напряжением выше

12В переменного тока и 120 В постоянного тока, в том числе:

1) изоляция обмоток и токоведущего кабеля переносного электроинструмента относительно корпуса и наружных металлических деталей

См. табл. 37 (прил. 3.1)

Длительность приложения напряжения (Uисп) – 1мин

Для электроинструмента на напряжение до 50 В Uисп принимается 550 В.

Для электроинструмента на напряжение выше 50 В и мощности до 1 кВт - 900 В, при мощности более 1кВт - 1350В

У электроинструмента с корпусом из изоляционного материала на время испытаний должны быть

обернуты металлической фольгой и соединены с заземлителем корпус и соединенные с ним детали.

При сопротивлении изоляции более 10 МОм испытание повышенным напряжением может быть заменено измерением одноминутного сопротивления изоляции мега- омметром на напряжение

2) изоляции обмоток

понижающих трансформаторов

3. Испытание повышенным напряжением промышленной частоты силовых и вторичных цепей рабочим напряжением выше 50В переменного тока, не содержащих устройств с микроэлектронными элементами:

1)изоляции распределительных устройств элементов приводов выключателей, короткозамыкателей, отделителей,

аппаратов, а также вторичных цепей управления, защиты, автоматики, телемеханики и т. д.

2) изоляции силовых и

осветительных электро-

проводок

Испытательное напряжение должно быть 1350 В при номинальном напряжении первичной обмотки трансформатора127-220В, и 1800 В - при номинальном напряжении первичной обмотки 380-440 В

Продолжительность испытания -

1 мин. Испытательное напряжение - 1 000 В

Испытательное напряжение прикладывается поочередно к каждой из обмоток. При этом остальные обмотки должны быть соединены с

заземленным корпусом и магнитопроводом

При проведении испытаний мегаомметром на 2 500 В можно не проводить измерений мегаомметром на

Производится в случае, если сопротивление изоляции оказалось ниже 1 МОм


Услуги предоставляются Официальным дилером , компанией «ЭНЕТРА Текнолоджиз». Среди многочисленного ассортимента электротехнического оборудования, предлагаемого нашей компанией, новейшая разработка МЭТЗ - трансформаторы с обмоткой из алюминиевой фольги ТМГ21 . Новинка выпускается мощностью 630 и 1000 кВА и заменит аналогичные трансформаторы серии 11, ТМГ 11.

Измерение сопротивления изоляции кабеля является одним из главнейших пунктов испытания кабелей. Например, если оболочка, которая обладает свойствами, оберегающими кабель, повреждена, тогда возможны неприятные последствия, среди них распространенными являются различные нарушения в системе энергосбережения. Именно это является главной причиной, того, что нужно делать замер сопротивления изоляции кабелей.

Чтобы избежать людей электрическим током, пожарам и другим неприятным ситуациям и т.д., необходимо постоянно делать электроизмерения сопротивления изоляции кабелей ВВГ для того, чтобы выявить неисправные участки в электропроводке.

Для того чтобы сделать замер сопротивления, нужно начать с осмотра электропроводки, а также проводов. Нужно особенно уделить внимание на те кабеля, которые имеют присоединения к аппаратам защиты. Не должно быть оплавленных концов для того, чтобы кабель в процессе работы не нагревался, так как это может значительно усложнить работу. Например, кабель может нагреваться от неправильного присоединения жил к зажимам также причиной может быть, что автоматический выключатель находится в неисправном состоянии.

Для того чтобы сделать замер, нужно:

  1. Во-первых, выключить все электроприборы от всех кабелей и проводов, которые подлежат электроизмерению.
  2. Перед тем как делать измерение нужно убрать из осветительных приборов все лампочки. В то же время, должны быть включены все выключатели приборов освещения.
  3. Необходимо выключить электропитание кабелей и проводов.

После проведения всех вышеперечисленных указаний энергосистема будет полностью готова к измерению сопротивления изоляции.



Допустимое показание сопротивления изоляции кабеля должно быть выше 0,5 мОм. Если эти показатели не отвечают, тогда этот кабель должен пройти демонтаж.

Также нужно обязательно учесть, что определение сопротивления проводится только после его фазировки, а также проверки на целостность. Делать измерение сопротивления кабеля нужно с помощью мегаомметра. (Рис 1)

Если вы проводите измерение с большой величиной значения, его будет лучше делать, когда стрелка, которая колеблется, полностью успокоится. Также нужно, чтобы были вынуты все электроприборы из сети.

Запрещается определять сопротивление линий, которые находятся близко от других похожих линий.

Рис 1. Мегаомметр

Определение сопротивленияпроводится мегаомметром с напряжением 2500 (В) в течение 1 минуты.

Замеры:

  • (A - B; В - С; С - А), то есть меж фазными проводниками;
  • (А - N; B - N; C - N), также меж нейтральными и фазными проводниками;
  • (А - РЕ; В - РЕ; С - РЕ), также между землёй и фазными проводниками;
  • (N - PE), и, наконец, между землёй и нейтральными проводниками.

Есть некоторые правила, которые нужно учесть, когда будете делать измерение сопротивления изоляции кабеля:

  • Во-первых, для того, чтобы сделать замер, нужно знать точную температуру окружающего воздуха. Потому что, если будет отрицательная температура, а в кабельной массе будет находиться вода (даже в малых количествах), тогда она превратится в кусочки льда. А лед сам по себе есть диэлектриком, то есть он не имеет способностями проводимости. Тем более что при проведении изоляции вы не сможете определить эти кусочки льда, поэтому нужно сразу позаботиться о приемлемой температуре. Оптимальная температура должна быть не ниже +5°C (исключением являются случаи, которые оговорены в специальных инструкциях.).
  • Во-вторых, если сопротивление электропроводки, которая находится в рабочем состоянии менее 1 МОм, тогда вывод об их пригодности дается после сначала проводится специальная проверка этой электропроводки, которая состоит в действии на нее переменным током промышленной частоты, но с напряжением в 1 кВ, а потом делаются выводы об их пригодности.
  • В-третьих, нужно не забывать, что при измерении должны использоваться только гибкие провода (у них на концах специальные изолирующие рукоятки, а также перед контактными щупами у них находятся ограничительные кольца). Провода, которые соединяют, имеют минимальную длину.
  • В-четвертых, Для определения используется мегомметр от 1000 В и выше. Приборы, которые не прошли ежегодные государственные проверки, не допускаются к использованию.

Если напряжение в электроустановках выше 1000 (В), делать измерение сопротивления кабеля нужно проводить в диэлектрических перчатках.

Для того чтобы определить нормы сопротивления изоляции кабелей, нужно сначала сделать классификацию этих кабелей:

Классификация кабелей:

  • выше 1000 (В), то есть высоковольтные силовые;
  • ниже 1000 (В), то есть высоковольтные силовые;
  • а также кабели управления.


Соответственно, нормы сопротивления изоляции, разные для каждого вида кабелей, например:

  1. Для кабелей выше 1000 (В), высоковольтных - нет определенной нормы, но при этом сопротивление будет выше, чем 10 (МОм).
  2. Для кабелей ниже 1000 (В), низковольтных — сопротивление должно быть выше 0,5 (МОм).

Используются показатели высокого или низкого напряжения, все зависит от напряжения вашей электроустановки.

МЕТОДИКА

измерениясопротивленияизоляции электрооборудования

многофункциональным электрическим тестером (тип МЭТ-5035)

1.ВВЕДЕНИЕ.

Измерение сопротивления изоляции постоянному току является наиболее распространенным видом контроля состояния изоляции. Сущность метода состоит в измерении отношения приложенного к изоляции постоянного напряженияU протекающему через неё ток i

R =

U

i

С учетом схемы замещения диэлектрика суммарный ток, протекающий через изоляцию

i=i скв +i абс +i о ,

i скв - ток сквозной проводимости;

i абс - ток абсорбции, обусловленный медленными процессами поляризации;

i о - ток. обусловленный процессами быстрой поляризации.

Поскольку токпротекает лишь в течение 10 –12 … 10 –14 с, то его влияние на результатах измерений не сказывается, тогда как величина абсорбционной составляющей iабс играет весьма существенную роль, т. е. в цепи измерения вплоть до завершения процессов поляризации диэлектрикабудет протекать ток, убывающий во времени со скоростью, зависящей от постояннойτ абс = R абс * C абс

Следовательно, измеренное значение сопротивления в этот период будет зависеть от длительности воздействия приложенного напряжения.

С увеличением времени от начала измерения до момента отсчета измеренное значение сопротивления увеличивается.

Для обеспечения единства измерений принято отсчет показаний приборов производить через 60 сек. после подачи на изоляцию измерительного напряжения.

2.НОРМЫ, ПЕРИОДИЧНОСТЬ ИПОГРЕШНОСТИИЗМЕРЕНИЯ

2.1. Согласно ПУЭ и ПТЭЭП:

2.1.1. Сопротивление изоляцииэлектропроводок и кабельныхлиний напряжениемдо 0,4 кВ. включительно должно быть не менее 0,5 мОм (табл. 1.8.39. ПУЭ, табл. 37прил. 3.1.ПТЭЭП).

2.1.2. Сопротивление изоляции распределительных устройств, щитов и токопроводов должно быть не менее 1 мОм (табл. 37 прил. 3.1. ПТЭЭП).

2.1.3. Сопротивление изоляции стационарныхэлектроплит должно быть не менее

1 мОм (табл. 37 прил. 3.1. ПТЭЭП).

2.1.4. Сопротивление изоляции кранов и лифтов должно быть не менее 0,5 мОм (табл. 37 прил. 3.1. ПТЭЭП).

2.1.5. Сопротивление изоляции электродного котла без водыдолжно быть не менее 0,5 мОм, если заводом-изготовителем не оговорены более высокие требования. (п. 25.4. прил. 3. ПТЭЭП).

2.1.6. Сопротивление изоляции обмоток статора у электродвигателей переменного тока на напряжение до 1000 В должно быть не менее 1 мОм при температуре 10…30 °С, а притемпературе 60 °С – 0,5 мОм (табл. 1.8.8. ПУЭ, п. 23.1.2. прил. 3. ПТЭЭП).

2.1.7. Сопротивление изоляции обмоток ротора у электродвигателей с фазным ротором на напряжение до 1000 В должно быть не менее 0,2 мОм (табл. 1.8.8. ПУЭ, п. 23.1.4. прил. 3. ПТЭЭП).

2.1.8. Сопротивление изоляции обмоток электрических машин постоянного тока на на-пряжение до 1000 В. зависит от температуры обмотки и наименьшее допустимое значение определяется по таблице 32приложения 3. ПТЭЭП.

2.1.9. Если в качестве защитной меры используются изолирующие помещения, в которых предотвращено одновременное прикосновение к частям, оказавшимся под разными потенциалами, при повреждении основной изоляции токоведущих частей сопротивлениеизолирующегополаистен в таких помещениях, относительнолокальной земли должнобытьнениже (п. 1.7.86. ПУЭ):

50кОмприноминальномнапряженииэлектроустановкиневыше500 В;

100 кОмприноминальномнапряженииэлектроустановкивыше500 В.

2.2. Измерение сопротивления изоляции производится в течение 1 минуты мегаомметром на напряжение:

Силовых кабельных линий напряжением до 1 кВ. -2500 В,

Распределительных устройств, щитов и токопроводов- 1000…2500 В,

Электродных котлов – 2500 В,

Электропроводок, кранов и лифтов -1000 В.

Электродвигателей и машин постоянного тока до500 В – 500 В,

Изолирующих полов при номинальном напряжениидо 500 В включительно- 500 В,

Изолирующих полов при номинальном напряженииболее 500 В– 1000 В.

2.3. В случае, если сопротивление изоляции силовых и осветительных электропроводок оказалось ниже 1 мОм, производится испытание повышенным напряжением промышленной частоты 1000 В в течение 1 мин. (п.28.3.2. прил.3. ПТЭЭП), которое можно заменить на испытание мегаомметром напряжением 2500 В (п. 3.6.22. ПТЭЭП).

2.4.Измерениесопротивленияизоляцииэлектропроводок, в том числе и осветительных сетей,производитсянереже1разав3года,адля электропроводокв особо опасных помещениях и наружныхустановках стационарных,электроплит, кранови лифтов -нереже1разавгод (табл. 37 прил. 3.1ПТЭЭП).

Испытания электродных котлов, электродвигателей переменного тока и электрических машин до 1000 В производится в сроки, устанавливаемые системой ППР.

2.5.Методикавыполненияизмеренийобеспечиваетпогрешностьнеболее

+ 0,05%отдлинышкалыприизмеренииприбором МЭТ 5035

3.МЕТОДИЗМЕРЕНИЙ

3.1.Измерение сопротивленияизоляции производится мегаомметром.

Мегаомметр состоит из генератора постоянного тока или генератора переменного тока с выпрямителем, логометра и добавочного сопротивленияR1, предназначенного для защиты прибора при пробое изоляции. Генератор вращается от руки или с помощью преобразователя

и выдает на зажимах напряжение, величина которого соответствует номинальному напряжению мегаомметра. Ток, протекающий через прибор, является обратно пропорциональным величине измеряемого сопротивления Rx, поэтому шкала прибора градуируется непосредственно в мегаомах. В мегаомметрах чаще всего используется логометр, у которого неравномерность вращения генератора практически не сказывается на показаниях прибора. Это объясняется тем, что роль противодействующей пружины в логометрах игпает параллельная обмотка, включенная на выходное напряжение генератора через резистор R2.

При измерении малых сопротивлений напряжение, приложенное к измеряемой изоляции, может оказаться значительно ниже номинального значения.

3.2.Для измерения сопротивления изолирующего пола используется квадратная металлическая пластина со стороной 250 мм.Между металлической пластиной и измеряемой поверхностью помещают влажную материю. Пластину прижимают к поверхности пола или стены с усилием 25 кГ. Сопротивление изоляции измеряют между измерительной пластиной и защитным проводником электроустановки.

4.ТРЕБОВАНИЯБЕЗОПАСНОСТИ

4.1.Перед началом испытаний необходимо убедиться в отсутствии людей, работающих на той части электроустановки, к которой присоединён испытательный прибор и, если нужно, выставить наблюдающего.

4.2.Место испытания, а также соединительные провода, которые при испытании находятся под испытательным напряжением, ограждаются.

4.3.На ограждениях и оборудовании вывешивается плакат “Испытание. Опасно дляжизни”

4.4.После окончания испытания необходимо снять остаточный заряд с проверяемого оборудования посредством его кратковременного (около 1 мин.) заземления.

4.5.Соединительные провода должны иметь стандартные оконцеватели и сопротивление изоляции не менее 10 мОм.

4.6. При измерении изоляции пола и стен в зоне измерения находиться в диэлектрических галошах или ботах. Прижим пластины к стене производится в диэлектрических перчатках.
5.ТРЕБОВАНИЯККВАЛИФИКАЦИИПЕРСОНАЛА

5.1.Испытания производятся бригадой в составе не менее двух человек, изкоторых производитель работ должен иметь группу по электробезопасности не ниже IV , а остальные - не ниже III .

5.2.Испытания может проводить персонал, прошедший специальную подготовку и имеющий в удостоверении по ПБ отметку о допуске к проведению испытаний.

5.3.В состав бригады, проводящей испытания, могут быть включены лица из ремонтного персонала с группой по электробезопасности II для выполнения подготовительных работ, наблюдения, а также для разъединения и соединения шин.

6.УСЛОВИЯИЗМЕРЕНИЙ

6.1.Измерениесопротивленияизоляциидолжнопроизводиться:

Междутоковедущимипроводниками,взятымипоочереди;

Междукаждымтоковедущимпроводникоми“землёй”.

(п.612.3ГОСТР 50571.16-99)

6.2.Измерениядолжныпроизводитьсяприотсоединённыхэлектроприборах,снятыхпредохранителях.

6.3. Приизмерениисопротивленияизоляциивосветительныхцепяхлампы должныбытьвывинчены,авыключателивключены.

Внимание Нормазаменыиспытаниябездемонтажалампнаизмерениетоков короткогозамыканияизПТЭЭПисключена!

6.4.Приизмеренииизоляцииполовистендолжнобытьсделано3измерения (п.612.5 ГОСТР 50571.16-99).Одноизизмеренийдолжнобытьвыполненопримернов 1 м отстороннихпроводящихчастей.

6.5.Сопротивлениеизоляцииполов,стенизмеряется донанесениянаиспытываемыеповерхностипокрытий (лак,краскаит.п.).

6.6.Для котловсопротивление изоляции измеряется в положении электродов при максимальной и минимальной мощности.

6.7.Обмотки электродвигателя, соединенные между собой наглухо и не имеющие вывода концов каждой фазы или ветви, должны испытываться относительно корпуса без разъединения(п. 3.6.17. ПТЭЭП).

6.8.В эксплуатации сопротивление изоляции обмоток электрических машин постоянного токаизмеряется вместе с соединенными с ними цепями и кабелями(п. 24.2.1. прил.3. ПТЭЭП).

6.9.Сопротивление изоляции электроплит производится при их нагретом состоянии.

С металлическими токопроводящими жилами производится с целью определения его работоспособности. От данного показателя в том числе зависит качество передаваемого по проводникам сигнала. Результатом снижения сопротивления изоляции, как правило, становится появление помех на линии, что, в свою очередь, приводит к возникновению звуковых шумов (телефонная линия), снижению пропускной способности (цифровые системы передачи данных) или же полный обрыв сообщения.

Согласно ГОСТ 15125-92 измерение сопротивления изоляции кабеля связи должно осуществляться раз в 6 месяцев.

Нормы сопротивления изоляции кабеля связи

Электрические нормы кабелей связи определяют минимальные значения сопротивления внешней изоляции и изоляции жил, при которых кабельная продукция допускается к использованию. Величина сопротивления зависит от типа и предназначения кабеля.

Требования к значениям сопротивления изоляции вводимых в эксплуатацию кабелей приведены в ГОСТ 15125-92, ОСТ 45.01-98, ОСТ 45.83-96 и прочей нормативно-технической документации. Рассмотрим несколько примеров.

Нормы сопротивления изоляции кабелей связи, наиболее часто применяемых для строительства первичных сетей, ГТС и других линий (значения на 1 км длины кабеля, без оконечных / с оконечными устройствами):

Кабели с трубчато-бумажной и пористо-бумажной изоляцией ( , и т. п.) — 8000/1000 МОм.
. Полиэтиленовая изоляция (марки — , и другие) — 6500/1000 МОм.
. Кордельно-бумажная изоляция ( , и т. п.) — 10000/3000 МОм.

Испытание кабелей связи

Измерение сопротивления изоляции кабеля связи также производятся согласно нормативным требованиям. При выполнении этой задачи важно учитывать текущую температуру и влажность воздуха. Все электрические параметры кабелей связи приводятся производителями при условии проведения испытаний при температуре +20 °С и длине кабельного изделия 1 км. Отклонение этих параметров от нормы приводит к увеличению или уменьшению показаний. Однако существуют простые формулы, позволяющие произвести перерасчет сопротивления в зависимости от температуры и длины.

Оборудование

Измерение сопротивления изоляции кабеля связи производится специальным прибором, называемым мегаомметром. Для определения нужной электрической величины данные устройства генерируют определенное напряжение (от 100 В и более).

На текущий момент используются две разновидности мегаомметров — цифровые и аналоговые. В первом случае для генерации напряжения используются электромеханические (ручные) генераторы и стрелочные индикаторы. Цифровые мегаомметры для генерации напряжения используют, как правило, гальванические элементы или аккумуляторные батареи. Результаты измерений выводятся на цифровое табло. Также некоторые модели мегаомметров не имеют собственного генератора тока и требуют подключения внешнего источника питания.

Для тестирования кабельных линий также широко применяются рефлектомеры, способные определять различные дефекты кабеля локационным (рефлектометрическим) методом. Принцип работы устройств следующий:

На жилы тестируемого кабеля подаются коротковолновые электрические импульсы.
. При наличии в кабеле каких-либо дефектов, подаваемый импульс отражается от препятствия и возвращается обратно к прибору.
. Возвращенный сигнал улавливается датчиками рефлектомера, измеряется, анализируется, после чего результат измерений отображается на дисплее.

Таким образом, при помощи рефлектомеров можно обнаружить обрывы, короткие замыкания, перепутанные пары, плотную землю и другие дефекты, которые имеют место в том числе при повреждении изоляции кабеля.

Требования и методика испытания кабелей связи

Измерение параметров кабелей связи (изоляции) — процесс несложный, но требует соблюдения установленных нормативной документацией (в частности — ГОСТ 3345-76, ГОСТ 2990-78) требований. Если кратко:

Перед проведением работ кабель должен быть обесточен и отсоединен от всех оконечных устройств и проводников (если это, например, кабель ГТС, испытываемые жилы отсоединяются от клемм распределительных щитков).
. Нельзя проводить испытания мегаомметром над кабелями, расположенными в непосредственной близости с другими электросистемами, т. к. генерируемое прибором напряжение способно создавать мощные электромагнитные поля, которые могут нарушить работу этих систем.
. Нельзя проводить испытания воздушных линий связи в грозу.
. Испытываемые проводники (жилы) должны быть заземлены.
. Отсоединять испытываемый проводник от «земли» можно только после его подключения к соответствующим клеммам мегаомметра (т. е. сначала подключается прибор, а только затем провода отсоединяются от «земли»).
. Перед выполнением и после проведения измерений проводник должен быть освобожден от остаточного тока путем короткого замыкания. Эта операция также выполняется над измерительными щупами мегаомметра.
. Для получения точного результата ток пропускается по испытываемому проводнику в течение (и не более!) 1 минуты. После проведения испытаний прибору и испытываемому проводнику дают «остыть» в течение 2 и более минут, если в соответствующей документации к мегаомметру и/или кабелю не приведены другие цифры.
. Все прочие требования к безопасности приведены в ГОСТ 2990-78.

Теперь рассмотрим процесс измерения сопротивления изоляции кабеля связи на примере коаксиальной пары без защитного экрана (будем измерять сопротивление изоляции жил). Согласно ГОСТ 2990-78, условная схема приложения напряжения к жилам кабеля выглядит следующим образом:

Жила «1» подключается к входу «R-» (вход также может быть обозначен, как «-», «Земля» или «З») мегаомметра.
. Жила «1» и вход «R-» мегаомметра заземляются.
. Жила «2» подключается к входу-источнику напряжения «R+» («+», «Rx», «Линия» или «Л») мегаомметра.

Условная рабочая схема:


Процесс проведения измерений:

Сначала на мегаомметре устанавливают уровень выходного напряжения, который зависит от марки испытуемого кабеля (обычно для проверки кабелей связи достаточно подать напряжение в 500 В).
. После подачи напряжения в цепь мегаомметру потребуется около 1 минуты для проведения измерений. Если это стрелочный прибор, необходимо дождаться ее полной остановки, для этого мегаомметр должен находиться в неподвижном состоянии. В случае с цифровыми приборами делать это необязательно.
. При необходимости измерения проводят несколько раз. Как было сказано выше, перед каждой процедурой прибору дают «остыть» в течение примерно 2 минут (плюс-минус — зависит от характеристик мегаомметра).

На показания сильно влияет температура окружающей среды (чем она выше, тем ниже сопротивление и наоборот). Если ее значение отлично от +20 градусов, необходимо воспользоваться следующей «корректирующей» формулой:

R_(20)=K*R_1, где:

R_(20)- сопротивление изоляции кабеля (в нашем случае сопротивление изоляции жил) при +20 °С (указывается в паспорте к марке кабеля);

R_1 — сопротивление, полученное в результате измерений при температуре, отличной от +20 °С;

K — «корректирующий» коэффициент, позволяющий определить такое значение сопротивления изоляции, которое бы имело место при +20 °С (коэффициенты приведены в приложении к ГОСТ 3345-76).

Например, возьмем кабель с полиэтиленовой изоляцией, первоначальное сопротивление которой (без оконечных устройств) составляет 5000 МОм. После измерения сопротивления жил при температуре в 15 °С получили результат, допустим, в 11 500 МОм. Согласно ГОСТ 3345-76, поправочный коэффициент «K» в случае с полиэтиленовой изоляцией жил составляет 0,48. Подставив это значение в формулу, имеем:

R_(20)=0,48*12500=5520 (сопротивление при нормальных условиях)

По следующей формуле можно определить сопротивление изоляции в зависимости от длины кабеля:

R=R_(20)* l, где:

R_(20)- сопротивление изоляции при +20 °С;

l — длина испытываемого кабеля;

Возьмем ту же марку кабеля длиной в 1,5 км. Нам известно первоначальное сопротивление изоляции жил при нормальных условиях — 5000 МОм. Отсюда:

R=6500* 1,5=7500 МОм

Компания «Кабель.РФ» является одним из лидеров по продаже кабельной продукции и располагает складами, расположенными практически во всех регионах Российской Федерации. Проконсультировавшись со специалистами компании, вы можете приобрести нужную вам марку по выгодным ценам.