Плавный пуск асинхронного электродвигателя с короткозамкнутым ротором. Несколько способов пуска асинхронного двигателя

На сегодняшний день асинхронные электродвигатели являются самыми распространёнными потребителями электроэнергии в мире и используются повсеместно, начиная от бытовых устройств, таких как пылесос, холодильник или вентилятор и заканчивая крупными промышленными установки, в которых мощность электродвигателей измеряется в мегаваттах. Это насосные станции, конвейеры, горнодобывающие установки, системы вентиляции или дымоудаления и т.д. Согласно статистики в мире используется около 300 миллионов трехфазных асинхронных электродвигателей с напряжением 380В.

Ежегодно около 10% из этих электродвигателей выходят из строя из-за неправильной эксплуатации, перегрузок или аварийных режимов работы. Часто выход из строя связано с процессом пуска асинхронного электродвигателя, когда он должен набрать номинальную скорость вращения в механизмах с большим моментом инерции. Соответственно момент пуска для асинхронного электродвигателя является тяжелым режимом работы с большой механической и электрической нагрузкой. Пусковые токи асинхронного электродвигателя могут превышать номинальные в 10 – 12 раз.

Виды пуска электродвигателей и их особенности

Прямой пуск асинхронного электродвигателя – это наиболее традиционный способ пуска, который используется с момента появления электродвигателей и до настоящего времени. Это наиболее технически просто реализуемое и экономически выгодное решение, позволяющее запустить электродвигатель при номинальном напряжении. При таком способе пуска используется минимальный набор коммутационного оборудования, однако в настоящее время он в основном применяется для пуска электродвигателей небольших мощностей в связи с определенным количеством недостатков, который можно разделить на 2 категории: электрические и механические.

Электрические проблемы:

При прямом пуске асинхронного электродвигателя происходит довольно большой бросок тока, который приводит к падению напряжения в питающей сети. А также может привести к срабатыванию защиты, особенно в случаях, когда не применяется специальные аппараты для защиты электродвигателя. Кроме того, в случае затяжного пуска, длительное протекание тока превышающего номинальный в 6 -8 раз оказывает значительное тепловое и электродинамическое воздействие как на кабель подключенный к электродвигателю, так и на обмотки асинхронного электродвигателя, что приводит к их повышенному износу.

Механические проблемы:

Высокий начальный пусковой момент может привести к значительному толчку и, следовательно, к существенной нагрузке на механизмы электропривода, такие как ремни или крепления узла подшипника. Это вызывает их сокращение срока службы или полный выход из строя. В случае особо ответственных производств простои оборудования в течение времени пока будет производиться ремонт могут привести к значительным убыткам. При останове, как и при пуске, возникают сильные механические вибрации, вызванные переходными процессами. Они не позволяют осуществить синхронную работу нескольких независимых узлов в сложных станках линиях или установках.

Пуск по схеме звезда-треугольник , также является одним из известных способов пуска асинхронных электродвигателей. Этот метод используется для снижения механических нагрузок и ограничения пускового тока. Но и у него есть несколько недостатков. Во-первых, электродвигатель обязательно должен иметь 6 клемм для подключения питания. Во-вторых, для пуска по данной схеме необходимы 3 контактора, что опять же увеличивает стоимость и габариты установки. При переключении со схемы звезда на схему треугольник все равно происходит, пусть и кратковременный, но большой по амплитуде бросок тока. В-третьих, требуется использование двух кабелей от пункта управления до электродвигателя, что в случае длинных линий достаточно дорого. И последний недостаток заключается в том, что останов электродвигателя при подобной схеме подключения точно такой же как и при прямом пуске.

Третий способ пуска – использование устройств плавного пуска .

Устройство плавного пуска – это механическое, электронное или электромеханическое устройство, используемое для плавного пуска или останова электродвигателей. Благодаря применению устройства плавного пуска можно одновременно обеспечить плавный разгон и останов асинхронного электродвигателя, добиться улучшения стабильности электрических сетей, то есть уменьшить броски тока при пуске и значительно уменьшить просадки напряжения в сети при тяжелом пуске. Кроме того, использование систем плавного пуска минимизируют механические перегрузки оборудования при пуске и останове, уменьшает износ механизмов и тем самым увеличивает срок службы асинхронных электродвигателей, редукторов, муфт и других деталей привода. Поэтому самым оптимальным решением по соотношению функционал – стоимость для пуска асинхронных электродвигателей, в случае если нет необходимости постоянного регулирования скорости, являются устройства плавного пуска.

Выбор преобразователя частоты

При определении характеристик преобразователя частоты для заданной нагрузки первым шагом является рассмотрение нагрузочных характеристик. Существуют четыре различных способа расчета требуемых выходных параметров, при этом выбор способа зависит от характеристик электродвигателя.

Нагрузочные характеристики

Прежде чем определить типоразмер преобразователя частоты, необходимо провести различие между двумя наиболее широко используемыми нагрузочными характеристиками. Нагрузочные характеристики различаются между собой следующим образом:

Рис. 1. Постоянный и квадратичный нагрузочный момент

Когда скорость центробежных насосов и вентиляторов увеличивается, потребляемая мощность возрастает в третьей степени (Р = n 3).

Обычный рабочий диапазон центробежных насосов и вентиляторов лежит в пределах скоростей от 50 до 90 %. Коэффициент нагрузки возрастает пропорционально квадрату скорости, т. е. приблизительно от 30 до 80 %.

Оба эти фактора проявляются в характеристиках крутящего момента электродвигателя, управляемого преобразователем частоты.

На рис 2 и 3 показаны характеристики крутящего момента для двух типоразмеров преобразователей частоты, один из них (рис. 3) имеет меньший диапазон мощности, чем другой. Для обеих характеристик крутящего момента были заданы одинаковые нагрузочные характеристики центробежного насоса.

На рис. 2 весь рабочий диапазон насоса (0-100 %) находится в пределах номинальных значений параметров двигателя. Поскольку обычный рабочий диапазон насоса находится в пределах 30-80 %, можно выбрать преобразователь частоты с меньшей выходной мощностью.





Рис. 2. Преобразователь частоты большой мощности


Рис. 3. Преобразователь частоты малой мощности

Если нагрузочный момент постоянен, электродвигатель должен быть способен развивать крутящий момент, превышающий нагрузочный момент, поскольку избыточный крутящий момент используется для разгона.

Для разгона и обеспечения высокого начального момента, например в случае привода ленточных транспортеров, достаточен кратковременный перегрузочный момент, составляющий 60 % от момента, развиваемого преобразователем частоты. Перегрузочный крутящий момент также обеспечивает системе способность преодолевать внезапные увеличения нагрузки. Преобразователь частоты, который не допускает никакого перегрузочного момента, должен выбираться таким образом, чтобы ускоряющий крутящий момент (T B) находился в пределах номинального крутящего момента.





Рис. 4. Перегрузочный крутящий момент используется для разгона

При определении нагрузочных характеристик рассматриваются четыре разных набора технических характеристик электродвигателя, позволяющие принять решения относительно выбора типоразмера преобразователя частоты по мощности.

1. Преобразователь частоты можно выбрать быстро и точно на основе значения тока l M , который потребляет электродвигатель. Если электродвигатель загружается не полностью, его ток может быть измерен при работе аналогичной системы с полной нагрузкой.



Рис. 5.

Электродвигатель 7,5 kW, 3 х 400 В потребляет ток 14,73 А.

Что касается технических данных преобразователя частоты, то выбирается такой преобразователь, у которого длительный максимальный выходной ток больше или равен 14,73 А при постоянной или квадратичной характеристике крутящего момента.

Примечание:

Если преобразователь частоты выбирается на основе мощности (способы 2-4), необходимо сравнить расчетную мощность и мощность, указанную в технических данных преобразователя частоты, при одном и том же напряжении. Если преобразователь частоты рассчитывается на основе тока (способ 1), этого не требуется, поскольку выходной ток преобразователя частоты влияет на другие данные.

2. Преобразователь частоты можно выбирать на основе полной мощности S M , потребляемой электродвигателем и полной мощности, подаваемой преобразователем частоты.



Рис. 6.

Пример расчета и выбора преобразователя частоты:

Электродвигатель 7,5 kW, 3x400 В потребляет ток 14,73 А. Sm =U х I х √3 / 1000 = 400 х 14.73 √3 / 1000= 10,2 кВА

Что касается технических данных преобразователя частоты, то выбирается такой преобразователь частоты, у которого длительная максимальная выходная мощность больше или равна 10,2 кВА при постоянной или квадратичной характеристике крутящего момента.

3. Преобразователь частоты можно также выбирать по мощности Р м, вырабатываемой электродвигателем. Однако данный способ является неточным, поскольку cos φ и коэффициент полезного действия η изменяются с нагрузкой.





Рис. 7.

Пример расчета мощности электродвигателя

Электродвигатель мощностью 3 кВт, имеющий cos φ = 0,80 и η = 0,81, потребляет мощность S M = P M /(η х cos φ) = 3,0 / (0,80 х 0,81)=4,6 кВА

Что касается технических данных преобразователя частоты, то выбирается такой преобразователь, у которого длительная максимальная выходная мощность больше или равна 4,6 кВА при постоянной или квадратичной характеристике крутящего момента.

4. На практике номинальная мощность большинства преобразователей частоты соответствует стандартной серии асинхронных электродвигателей. Поэтому преобразователи частоты часто выбирают исходя именно из этого соображения, что, однако, может привести к неточному определению их характеристик, особенно если электродвигатель не нагружается полностью.





Рис. 8.

Распределение тока в преобразователе частоты (cos φ (фи) электродвигателя)

Ток для намагничивания электродвигателя подается конденсатором, находящимся в промежуточной цепи преобразователя частоты. Ток намагничивания представляет собой реактивный ток, который протекает между конденсатором и электродвигателем (рис. 9).





Рис. 9. Токи в преобразователе частоты

Из сети поступает только активный ток (l W). Именно поэтому выходной ток преобразователя частоты всегда больше входного тока. Кроме активного тока из сети потребляется ток I loss , (ток потерь).

Пример расчета

При отсутствии нагрузки ток 4-полюсного электродвигателя мощностью 1,1 кВт равен 1,6 А. Выходной ток подключенного преобразователя частоты составляет около 1,6 А, а входной ток при работе без нагрузки почти равен нулю.

Изготовители электродвигателей обычно указывают cos φ электродвигателя при номинальном токе. При меньшем значении cos φ (например, в случае реактивного синхронного электродвигателя) номинальный ток электродвигателя при одинаковых значениях мощности и напряжения будет больше, как видно из следующего уравнения:

I S = I W / cos φ

Если преобразователь частоты выбирается по номинальному току электродвигателя (способ 1), то снижения номинального крутящего момента электродвигателя не происходит.

Конденсатор, подключенный к клеммам электродвигателя для компенсации реактивного тока, необходимо удалить. Ввиду высокой частоты коммутации преобразователя частоты конденсатор ведет себя как короткозамкнутая цепь и вызывает существенное увеличение тока электродвигателя. Преобразователь воспримет это как замыкание на землю или короткое замыкание и отключится.

Управление скоростью электродвигателя

Выходная частота преобразователя частоты и, следовательно, скорость электродвигателя управляются одним или несколькими сигналами (0-10 В, 4-20 мА или импульсами напряжения). Когда подается сигнал на увеличение скорости, скорость электродвигателя возрастает, и вертикальная часть характеристик крутящего момента электродвигателя сдвигается вправо (рис. 10).





Рис. 10. Зависимость между управляющим сигналом и характеристиками крутящего момента электродвигателя

Если нагрузочный момент меньше, чем номинальный крутящий момент электродвигателя, скорость достигнет требуемого значения. Как показано на рис. 11, нагрузочные характеристики пересекаются с характеристиками крутящего момента электродвигателя в вертикальной части (в точке А). Если пересечение происходит в горизонтальной части (точка В), скорость электродвигателя не может длительное время превышать соответствующее значение, Преобразователь частоты допускает превышение предельного тока короткого замыкания без отключения (точка С), но продолжительность превышения обязательно должна быть ограничена по времени.





Рис. 11. Ток электродвигателя может в течение короткого времени превышать предел по току

Рампы разгона и торможения

Характеристика (рампа) разгона показывает темп, с которым происходит увеличение скорости вращения, и задается в виде времени разгона t acc . Эти рампы базируются, главным образом, на номинальной частоте электродвигателя, например, рампа разгона 5 с означает, что преобразователю частоты потребуется 5 секунд для перехода от нулевой до номинальной частоты электродвигателя (f = 50 Гц).





Рис. 12. Время разгона и торможения

Рампа торможения показывает, насколько быстро снижается скорость. Она задается в виде времени торможения t dec .

Возможен непосредственный переход от разгона к торможению, поскольку электродвигатель всегда отслеживает выходную частоту инвертора.

Если известен момент инерции вала электродвигателя, можно вычислить оптимальные значения времени разгона и торможения.

t acc = J x (n 2 -n 1)/[(T acc – T fric) x 9,55]

tdec = J x (n 2 -n 1)/[(T acc + T fric) x 9,55]

J - момент инерции вала электродвигателя.

T fric – момент трения системы.

Т асс - избыточный (перегрузочный) момент, используемый для разгона.

T dec - тормозящий момент (момент торможения), который возникает при уменьшении задания скорости.

n 1 и n 2 - скорости вращения на частотах f 1 и f 2 .

Если преобразователь частоты допускает кратковременный перегрузочный момент, то моменты разгона и торможения устанавливаются равными номинальному крутящему моменту электродвигателя Т. На практике время разгона и время торможения обычно одинаковы.

Пример расчета

J = 0,042 кгм 2 , T fric = 0,05 x M N , n 1 = 500 об/мин, n 2 = 1000 об/мин, Т N = 27 Нм

tacc = J х (n 2 – n 1)/ [(Т асс - T fric) х 9,55] = 0,042 х (1000 - 500)/ [(27,0 - (0,05 х 27,0)) х 9,55] = 0,1 [с]

Динамическое торможение

Когда сигнал задания скорости снижается, электродвигатель ведет себя как генератор и тормозит. Замедление при торможении зависит от величины нагрузки электродвигателя.

Электродвигатели, подключенные непосредственно к сети, отдают мощность торможения обратно в сеть.

Если электродвигатель работает от преобразователя частоты, энергия торможения сохраняется в промежуточной цепи преобразователя частоты. Если мощность, выделяемая при торможении, велика и преобразователь частоты не может рассеять ее за счет собственной конструкции, напряжение промежуточной цепи возрастает.

Напряжение промежуточной цепи может расти до тех пор, пока преобразователь частоты не будет отключен средствами защиты, и иногда к промежуточной цепи приходится подключать нагрузку в виде тормозного модуля и внешнего резистора для поглощения мощности торможения.?

Использование тормозного модуля и тормозного резистора позволяет осуществлять быстрое торможение при больших нагрузках. Однако, при этом возникают проблемы, связанные с нагревом. Другим решением является использование блока рекуперативного торможения. Такие блоки применяются для преобразователей частоты с неуправляемым выпрямителем и возвращают энергию торможения в питающую сеть.

В преобразователях частоты с управляемыми выпрямителями мощность торможения может возвращаться в сеть (см. рис. 13) с помощью, например, инвертора, подключенного к выпрямителю встречно-параллельно.



Рис. 13. Включение тормозного модуля и тормозного резистора



Рис. 14. Инвертор, включенный встречно-параллельно

Другой способ торможения электродвигателя - торможение постоянным током. Для создания магнитного поля в статоре используется напряжение постоянного тока, подаваемое между двумя фазами электродвигателя. Поскольку энергия торможения остается в электродвигателе и возможен перегрев, торможение постоянным током рекомендуется использовать в диапазоне низких скоростей, чтобы не превышать номинальный ток электродвигателя. Обычно торможение постоянным током ограничивается во времени.?

Реверс

Направление вращения асинхронных электродвигателей определяется порядком следования фаз питающего напряжения.

Если поменять местами две фазы, направление вращения электродвигателя изменится, и он будет вращаться в противоположном направлении.

Большинство электродвигателей сконструировано таким образом, чтобы заставить вал двигателя вращаться по часовой стрелке, если соединение выполнено следующим образом:





Рис. 15. Направление вращения электродвигателя изменяется путем изменения порядка следования фаз

Этому же правилу отвечает и порядок следования фаз на выходных клеммах большинства преобразователей частоты.

Преобразователь частоты может осуществлять реверс электродвигателя путем изменения порядка следования фаз с помощью электроники. Реверс производится либо путем задания отрицательной скорости, либо цифровым входным сигналом. Если при первоначальном вводе в эксплуатацию требуется, чтобы электродвигатель имел определенное направление вращения, необходимо знать заводскую настройку преобразователя частоты по умолчанию.

Поскольку преобразователь частоты ограничивает ток электродвигателя номинальным значением, двигатель, управляемый преобразователем частоты, можно реверсировать чаще, чем двигатель, подключенный непосредственно к сети.





Рис. 16. Тормозной момент преобразователя частоты во время реверса

Рампы

Все преобразователи частоты имеют функции изменения скорости (рампы) для обеспечения плавной работы. Эти рампы можно изменять, и благодаря им задание скорости можно увеличивать или уменьшать в определенном интервале.





Рис. 17. Регулируемое время разгона и торможения

Угол наклона характеристики разгона/торможения (длительность разгона/торможения) можно установить таким малым, что в некоторых ситуациях электродвигатель не сможет отработать задание (не сможет разогнать/затормозить двигатель за заданное время).

Это приводит к увеличению тока электродвигателя до тех пор, пока не будет достигнут предел по току. В случае малого времени замедления (t -а) напряжение промежуточной цепи способно возрасти до такого уровня, что схема защиты преобразователя частоты остановит преобразователь.

Оптимальное время изменения скорости можно вычислить по приведенным ниже формулам.

t a = J x n/[(T N -T fric)x9,55]

t -a = J x n/[(T N +T fric)x9,55]

t a - время увеличения скорости

t -a - время уменьшения скорости

n - число оборотов

T N - номинальный крутящий момент электродвигателя

T fric - момент трения



Рис. 18. Установка времени изменения скорости

Время разгона/торможения обычно выбирается исходя из номинальной скорости электродвигателя.

Текущий контроль

Преобразователи частоты могут контролировать регулируемый процесс и вмешиваться в него при неисправности.

Такой контроль может быть разделен на три вида в зависимости от объекта: контроль технологической установки, контроль электродвигателя и контроль преобразователя частоты.

Контроль установки основан на контроле выходной частоты, выходного тока и крутящего момента электродвигателя. На основании этих параметров можно устанавливать несколько пределов, превышение которых воздействует на функцию управления. Этими пределами могут быть допустимая наименьшая скорость электродвигателя (минимальная частота), допустимый наибольший ток (предел по току) или допустимый наибольший крутящий момент электродвигателя (предельный крутящий момент).

Преобразователь частоты может быть запрограммирован, например, на подачу предупреждающего сигнала, уменьшение скорости электродвигателя или останов последнего в случае выхода его скорости за установленные пределы.

Пример

В установках, использующих для соединения электродвигателя с остальной частью системы клиновой ремень, преобразователь частоты может программироваться на контроль состояния этого ремня.

Поскольку в случае разрыва ремня выходная частота будет увеличиваться быстрее, чем определяется заданной рампой, в таких ситуациях можно использовать эту частоту для подачи предупреждения или останова электродвигателя.

Контроль электродвигателя можно производить с помощью преобразователя частоты путем мониторинга тепловой модели электродвигателя или путем подключения к электродвигателю термистора. Преобразователь частоты может предотвращать перегрузку электродвигателя, действуя подобно термореле. В вычислениях, производимых преобразователем частоты, участвует и выходная частота. Это гарантирует, что электродвигатель не будет перегружаться на малых скоростях из-за ухудшения внутренней вентиляции. Современные преобразователи частоты также способны защищать электродвигатели с принудительной вентиляцией, если ток становится слишком большим.

Контроль преобразователя частоты традиционно производится таким образом, что в случае перегрузки по току преобразователь отключается. Некоторые преобразователи допускают кратковременную перегрузку по току. Микропроцессор в преобразователе частоты способен одновременно учитывать значение тока электродвигателя и время его приложения, что обеспечивает возможность оптимального использования преобразователя частоты без перегрузки.


По материалам Danfoss

При пуске, т. е. при подаче напряжения на неподвижный электродвигатель, сопротивление его мало и ток ротора имеет максимальное значение. Соответственно, максимальное значение имеет и ток стато­ра. Ток статора при пуске электродвигателя называется пусковым током. Начальный пусковой ток ра­вен току трехфазного КЗ за сопротивлением, равным сопротивлению неподвижного электродвигателя. Пусковой ток состоит из переменной составляющей, затухающей по мере увеличения частоты враще­ния, и апериодической составляющей, затухающей в течение нескольких периодов. По мере разворота ток, потребляемый элек­тродвигателем, меняется вначале мало, и только при приближении к синхронной частоте вращения он быстро спадает. Объясняется это характером изменения сопротивления двигателя. Периодическая составляющая пускового тока электродвигателя при неподвижном роторе в 4-8 раз превосходит Пик тока с учетом апериодической составляющей достигает:

Длительность пуска электродвигателей как правило, не пре­восходит 10-15 с, и только у электродвигателей с тяжелыми условиями пуска это значение может быть значительно больше.

При возникновении КЗ в питающей сети вблизи зажимов электродвигателя, последний за счет внутренней ЭДС, поддерживаемой энергией магнитного поля, посылает к месту КЗ быстро затухаю­щий ток. Броски тока КЗ могут достигать значений пусковых токов. Зависимость момента электродвигателей от напряжения выражается формулой:

При КЗ в сети напряжение на зажимах электродвигателей снижается. В результате этого, моменты электродвигателей уменьшаются, и они начинают тормозиться, увеличивая скольжение до тех пор, пока вновь не восстановится равенство . Если при этом окажется, что то электродвигатель будет находиться на пределе устойчивой работы и иметь скольжение, равное критическому. При дальнейшем снижении напряжения электродвигатель будет тормозиться вплоть до полной остановки. После отключения КЗ напряжение питания восстанавливается, и дальнейшее поведение электродвигателя будет зави­сеть от скольжения, имевшего место в момент восстановления напряжения, и соответствующих ему значений

При электродвигатель развернется до нормальной частоты вращения, а при М д < М с будет продолжать тормозиться до полного останова. В этом случае электродвигатель необходимо отклю­чить, так как он будет потреблять пусковой ток, не имея возможности развернуться.

Самозапуск электродвигателей тяжелее обычного пуска. Объясняется это тем, что при самоза­пуске электродвигатели пускаются нагруженными, а электродвигатели с фазным ротором - без пус­кового реостата в цепи ротора, что уменьшает пусковой момент и увеличивает пусковой ток и, нако­нец, пускается большое количество электродвигателей одновременно, что вызывает падение на­пряжения в питающей сети от суммарного пускового тока. Однако самозапуск электродвигателей проходит сравнительно легко. Так самозапуск электродвигателей собственных нужд электростанций возможен даже в тех случаях, когда в первый момент после восстановления напряжения значение его составляет При этом общее время самозапуска не превышает 30-35 с, что допустимо по их нагреву.

В случае обрыва одной из фаз обмотки статора электродвигатель продолжает работать. Частота вращения ротора при этом несколько уменьшается, а обмотки двух, оставшихся в работе фаз пере­гружаются током в 1,5-2 раза большим номинального. Защита от работы на двух фазах применя­лась ранее лишь на электродвигателях напряжением до 500 В, защищенных предохранителями, если двухфазный режим работы может повлечь за собой повреждение электродвигателя. В настоящее время в связи с высокой стоимостью двигателей высокого напряжения и высокой вероятностью не-полнофазных режимов в питающей сети считается целесообразным, не вводя специальную защиту от режима работы двумя фазами, отключать двигатели защитой от перегрузки, которая имеет подходя­щие для этой цели уставку Токовые органы защиты от перегрузки в этом случае должны включаться не менее чем в 2 фазы трансформаторов тока двигателей.

Анализ повреждений асинхронных двигателей показывает, что основной причиной их выхода из строя является разрушение изоляции из-за перегрева.

Перегрузка электротехнического изделия (устройства) - превышение фактического значения мощности или тока электротехнического изделия (устройства) над номинальным значением. (ГОСТ 18311-80).

Температура нагрева обмоток электродви гателя зависит от теплотехнических характеристик двигателя и параметров окружающей среды. Часть выделяемого в двигателе тепла идет на нагрев обмоток, а остальное отдается в окружающую среду. На процесс нагрева влияют такие физические параметры, как теплоемкость и теплоотдача .

В зависимости от теплового состояния электродвигателя и окружающего воздуха степень их влияния может быть различной. Если разность температур двигателя и окружающей среды невелика, а выделяемая энергия значительна, то ее основная часть поглощается обмоткой, сталью статора и ротора, корпусом двигателя и другими его частями. Происходит интенсивный рост температуры изоляции . По мере нагрева все больше проявляется влияние теплоотдачи. Процесс устанавливается после достижения равновесия между выделяемым теплом и теплом, отдаваемым в окружающую среду.

Повышение тока сверх допустимого значения не сразу приводит к аварийному состоянию . Требуется некоторое время, прежде чем статор и ротор нагреются до предельной температуры. Поэтому нет необходимости в том, чтобы защита реагировала на каждое превышение тока. Она должна отключать машину только в тех случаях, когда возникает опасность быстрого износа изоляции.

С точки зрения нагрева изоляции большое значение имеют величина и длительность протекания токов, превышающих номинальное значение. Эти параметры зависят прежде всего от характера технологического процесса.

Перегрузки электродвигателя технологического происхождения

Перегрузки электродвигателя, вызванные периодическим увеличением момента на валу рабочей машины. В таких станках и установках мощность электродвигателя все время изменяется. Трудно заметить сколько-нибудь длительный промежуток времени, в течение которого ток оставался бы неизменным по величине. На валу двигателя периодически возникают кратковременные большие моменты сопротивления, создающие броски тока.

Такие перегрузки обычно не вызывают перегрева обмоток электродвигателя, имеющих сравнительно большую тепловую инерцию. Однако при достаточно большой длительности и неоднократной повторности создается . Защита должна "различать" эти режимы. Она не должна реагировать на кратковременные толчки нагрузки.

В других машинах могут возникать сравнительно небольшие, но длительные перегрузки. Обмотки электродвигателя постепенно нагреваются до температуры, близкой к предельно допустимому значению. Обычно электродвигатель имеет некоторый запас по нагреву, и небольшие превышения тока, несмотря на продолжительность действия, не могут создать опасной ситуации. В этом случае отключение не обязательно. Таким образом, и здесь защита электродвигателя должна "различать" опасную перегрузку от неопасной.

Кроме перегрузок технологического происхождения , могут быть аварийные перегрузки , возникающие по другим причинам (авария в питающей линии, заклинивание рабочих органов, снижение напряжения и др.). Они создают своеобразные режимы работы асинхронного двигателя и выдвигают свои требования к средствам защиты . Рассмотрим поведение асинхронного двигателя в характерных аварийных режимах.

Перегрузки при длительном режиме работы с постоянной нагрузкой

Обычно электродвигатели выбирают с некоторым запасом по мощности. Кроме того, большую часть времени машины работают с недогрузкой. В результате ток двигателя часто значительно ниже номинального значения. Перегрузки возникают, как правило, при нарушениях технологии, поломках, заедании и заклинивании в рабочей машине.

Такие машины, как вентиляторы, центробежные насосы, ленточные и шнековые транспортеры, имеют спокойную постоянную или слабо изменяющуюся нагрузку. Кратковременные изменения подачи материала практически не влияют на нагрев электродвигателя. Их можно не принимать во внимание. Иное дело, если нарушения нормальных условий работы остаются на длительное время.

Большинство электроприводов имеет определенный запас мощности. Механические перегрузки прежде всего вызывают поломки деталей машины. Однако, принимая во внимание случайный характер их возникновения, нельзя быть уверенным, что при определенных обстоятельствах окажется перегруженным и электродвигатель. Например, это может случиться с двигателями шнековых транспортеров. Изменение физико-механических свойств транспортируемого материала (влажность, крупность частиц и т. д.) немедленно отражается на мощности, требуемой на его перемещение. Защита должна отключать электродвигатель при возникновении перегрузок, вызывающих опасный перегрев обмоток.

С точки зрения влияния длительных превышений тока на изоляцию следует различать два вида перегрузок по величине: сравнительно небольшие (до 50%) и большие (более 50%).

Действие первых проявляется не сразу, а постепенно, в то время как последствия вторых проявляются через короткое время. Если превышение температуры над допустимым значением невелико, то старение изоляции происходит медленно. Небольшие изменения в структуре изолирующего материала накапливаются постепенно. По мере возрастания температуры процесс старения значительно ускоряется.

Считают, что перегрев сверх допустимого на каждые 8 - 10°С сокращает срок службы изоляции обмоток электродвигателя в два раза. Таким образом, перегрев на 40°С сокращает срок службы изоляции в 32 раза! Хоть это и много, но обнаруживается оно после многих месяцев эксплуатации.

При больших перегрузках (более 50%) изоляция быстро разрушается под действием высокой температуры.

Для анализа процесса нагрева воспользуемся упрощенной моделью двигателя. Повышение тока вызывает увеличение переменных потерь. Обмотка начинает нагреваться. Температура изоляции изменяется в соответствии с графиком на рисунке. Величина установившегося превышения температуры зависит от величины тока.

Через некоторое время после возникновения перегрузки температура обмоток достигает допустимого для данного класса изоляции значения. При больших перегрузках оно будет короче, при малых - длиннее. Таким образом, каждому значению перегрузки будет соответствовать свое допустимое время, которое можно считать безопасным для изоляции.

Зависимость допустимой длительности перегрузки от ее величины называется перегрузочной характеристикой электродвигателя . Теплофизические свойства имеют некоторые отличия, также отличаются и их характеристики. На рисунке сплошной линией показана одна из таких характеристик.

Из приведенной характеристики можно сформулировать одно из основных требований . Она должна срабатывать в зависимости от величины перегрузки. Э дает возможность исключить ложные срабатывания при неопасных бросках тока, возникающие, например, при пуске двигателя. Защита должна срабатывать только при попадании в область недопустимых значений тока и длительности его протекания. Ее желаемая характеристика, показанная на рисунке пунктирной линией, должна всегда располагаться под перегрузочной характеристикой двигателя.

На работу защиты влияет ряд факторов (неточность настройки, разброс параметров и др.), в результате действия которых наблюдаются отклонения от средних значений времени срабатывания. Поэтому пунктирную кривую на графике следует рассматривать как некую среднюю характеристику. Для того чтобы в результате действия случайных факторов характеристики не пересеклись, что вызовет неправильное отключение двигателя, необходимо обеспечить определенный запас. Фактически приходится иметь дело не с отдельной характеристикой, а с защитной зоной, учитывающей разброс времени срабатывания защиты.

С точки зрения точного действия защиты электродвигателя желательно, чтобы обе характеристики были по возможности близки одна к другой. Это позволит избежать ненужное отключение при перегрузках, близких к допустимым. Однако при наличии большого разброса обеих характеристик достигнуть этого невозможно. Для того чтобы не попасть в зону недопустимых значений тока при случайных отклонениях от расчетных параметров, необходимо обеспечить определенный запас.

Характеристика защиты должна располагаться на некотором расстоянии от перегрузочной характеристики двигателя, чтобы исключить их взаимное пересечение. Но при этом получается проигрыш в точности действия защиты электродвигателя.

В области токов, близких к номинальному значению, появляется зона неопределенности. При попадании в эту зону нельзя точно сказать, сработает защита или нет.

Такой недостаток отсутствует у . В отличие от токовой защиты она действует в зависимости от причины, вызывающей старение изоляции, ее нагрева. При достижении опасной для обмотки температуры она отключает двигатель независимо от причины, вызвавшей нагрев. Это - одно из главных достоинств температурной защиты .

Однако не следует преувеличивать недостаток токовой защиты. Дело в том, что двигатели имеют определенный запас по току. Номинальный ток электродвигателя всегда ниже того тока, при котором температура обмоток достигает допустимого значения. Его устанавливают, руководствуясь экономическими расчетами. Поэтому при номинальной нагрузке температура обмоток двигателя ниже допустимого значения. За счет этого и создается тепловой резерв двигателя, который в определенной степени компенсирует недостаток .

Многие факторы, от которых зависит тепловое состояние изоляции, имеют случайные отклонения. В связи с этим уточнения характеристик не всегда дают желаемый результат.

Перегрузки при переменном длительном режиме работы

Некоторые рабочие органы и механизмы создают нагрузку, изменяющуюся в больших пределах, как, например, в машинах для дробления, измельчения и других аналогичных операций. Здесь периодические перегрузки сопровождаются недогрузками вплоть до работы на холостом ходу. Каждое увеличение тока, взятое в отдельности, не приводит к опасному росту температуры. Однако, если их много и они повторяются достаточно часто, действие повышенной температуры на изоляцию быстро накапливается.

Процесс нагрева электродвигателя при переменной нагрузке отличается от процесса нагрева при постоянной или слабо выраженной переменной нагрузке. Различие проявляется как в ходе изменения температуры, так и в характере нагрева отдельных частей машины.

Вслед за изменениями нагрузки изменяется и температура обмоток. Из-за тепловой инерции двигателя колебания температуры имеют меньший размах. При достаточно высокой частоте нагрузки температуру обмоток можно считать практически неизменяющейся. Такой режим работы будет эквивалентен длительному режиму с постоянной нагрузкой. При низкой частоте (порядка сотых долей герца и ниже) колебания температуры становятся ощутимыми. Периодические перегревы обмотки могут сократить срок службы изоляции.

При больших колебаниях нагрузки с низкой частотой электродвигатель постоянно находится в переходном процессе. Температура его обмотки изменяется вслед за колебаниями нагрузки. Так как отдельные части машины имеют разные теплофизические параметры, то каждая из них нагревается посвоему.

Протекание тепловых переходных процессов при изменяющейся нагрузке - явление сложное и не всегда поддается расчету. Поэтому о температуре обмоток двигателя нельзя судить по току, протекающему в данный момент времени. Ввиду того, что отдельные части электродвигателя нагреваются по-разному, внутри электродвигателя происходят перетоки тепла из одной ее части в другие. Может быть и так, что после отключения электродвигателя температура обмоток статора будет расти за счет тепла, поступающего от ротора. Таким образом, величина тока может и не отражать степень нагрева изоляции. Следует также принять во внимание, что при некоторых режимах ротор будет нагреваться более интенсивно, а охлаждаться менее интенсивно, чем статор.

Сложность процессов теплообмена затрудняет контроль нагрева электродвигателя . Даже непосредственное измерение температуры обмоток может при некоторых условиях дать погрешность. Дело в том, что при неустановившихся тепловых процессах температура нагрева различных частей машины может быть разной и измерение в одной точке не может дать истинной картины. Тем не менее по сравнению с другими методами измерение температуры обмотки дает более точный результат.

Можно отнести к наиболее неблагоприятному с точки зрения действия защиты. Периодическое включение в работу предполагает возможность кратковременной перегрузки двигателя. При этом величина перегрузки должна быть ограничена по условию нагрева обмоток не выше допустимого значения.

Защита, "следящая" за состоянием нагрева обмотки, должна получать соответствующий сигнал. Так как в переходных режимах ток и температура могут не соответствовать друг другу, то защита, действие которой основано на измерении тока, не может выполнять свою роль должным образом.

Время пуска является одним из главных факторов при выборе двигателя. В момент пуска двигатель потребляет из сети пусковой ток, превышающий номинальный в 5-7 раз (для асинхронных двигателей с коротко- замкнутым ротором). При этом происходит усиленный нагрев обмоток, и если время пуска затягивается, температура обмоток может превысить допустимую.

Следовательно, большое значение для времени разгона имеет кратность пускового момента. Поэтому для компрессорных приводов рекомендуется применять электродвигатели с повышенным пусковым моментом (АОП).

Для агрегатов малой и средней мощности время пуска при сравнительно редких пусках обычно не превышает 3-5 с, для мощных агрегатов - 20-30 с.

Момент на валу асинхронного двигателя пропорционален квадрату напряжения. Таким образом, даже небольшое понижение напряжения в момент пуска резко снижает пусковой момент. Возможны случаи в сетях небольших мощностей, когда агрегат не может быть пущен в ход при полной нагрузке. Поэтому, выбирая двигатель, определяют величину минимально допустимого напряжения, при котором агрегат может быть пущен в ход.

Минимальный избыточный момент, обеспечивающий разгон привода, должен быть не менее 0,1 номинального момента электродвигателя. Статический момент компрессора принимается постоянным за время пуска и равным номинальному (пуск без разгрузки). Если сеть имеет недостаточную мощность и снижение напряжения может оказаться при пуске больше расчетного, то пуск следует производить при разгруженном компрессоре. Если такой пуск невозможен, двигатель с коротко-замкнутым ротором надо заменить на двигатель с фазным ротором или изменить схему пуска (применить схему с ограничением пускового тока).

Электротехника схемы управления электроприводом учитывает влияние снижения напряжения на работу аппаратуры пуска и управления (пускатели, реле и т.д.). Развитие современных компрессоров направлено на использование для их привода встроенных электродвигателей для малых, средних и крупных машин.

Исследования пусковых моментов поршневых холодильных компрессоров со встроенными электродвигателями позволили сделать определенные выводы по использованию последних для привода некоторых типов компрессоров. Так, применение встроенных электродвигателей позволяет добиться полной герметизации холодильного компрессора, отказаться от использования промежуточных звеньев (приводные ремни, муфты и т. п.), что повышает надежность установки и уменьшает количество используемого металла. Кроме того, охлаждение обмотки электродвигателя парами холодильного агента снижает его габариты за счет повышения удельной нагрузки.

Встроенные электродвигатели имеют меньшую стоимость по сравнению с электродвигателями обычного исполнения.

Работа компрессоров в широком диапазоне температур кипения и конденсации требует от встроенных электродвигателей высоких к.п.д. и коэффициента мощности cos Ф при изменении нагрузки в значительных пределах. Необходимы также хорошее охлаждение обмоток электродвигателя и надежный пуск компрессора во всем диапазоне рабочих температур.

С уменьшением пускового момента двигателя удлиняется процесс пуска, происходит перегрев изоляции, сокращение срока ее службы. Завышение пускового момента уменьшает к.п.д. и cos Ф двигателя и его перегрузочную способность.

Таким образом, задача подбора электродвигателя по пусковому моменту тесно связана с надежностью и экономичностью холодильной установки.

Исследования показали, что с увеличением числа цилиндров компрессора, махового момента, уменьшения степени сжатия кратность пускового момента уменьшается.

Экспериментальные данные позволяют для некоторых близких по конструкции компрессоров (герметичных, бессальниковых) установить следующее:

  • определяя пусковой момент электродвигателя, необходимо учитывать действие маховых масс электродвигателя и компрессора, утечку газа из цилиндров при малых скоростях и номинальных оборотах;
  • чем меньше число цилиндров компрессора и выше степень сжатия, тем величина кратности пускового момента электродвигателя больше;
  • если число цилиндров компрессора больше четырех и пуск производится при малых степенях сжатия, можно использовать электродвигатель нормального исполнения, а не с повышенной кратностью пускового момента.

Эти данные могут быть распространены и на компрессоры, близкие по конструкции к испытанным.