Электронный ключ на транзисторе - принцип работы и схема. Транзисторный ключ схема и работа.

Транзистор в режиме ключа? Какого еще ключа? Такого?

А может быть такого?

Ключ от сундучка более-менее похож на правду, так как запирает и отпирает сундучок, но все равно далек от истины.

Раньше, когда еще не было сверхмощных компьютеров и сверхскоростного интернета, сообщения передавали с помощью азбуки Морзе. В азбуке Морзе использовались три знака: точка, тире и... пауза. Чтобы передавать сообщения на далекие расстояния использовался так называемый телеграфный КЛЮЧ.



Нажали на черную большую пипочку - ток побежал, отжали - получился обрыв цепи и ток перестал течь. ВСЕ! То есть меняя скорость и продолжительность нажатия на пипочку, мы можем закодировать любое сообщение;-) Нажали на пипку - сигнал есть, отжали пипку - сигнала нет.

Ключ, собранный на транзисторе, называется транзисторным ключом . Транзисторный ключ выполняет только две операции: вКЛЮЧ ено и выКЛЮЧ ено, промежуточный режим между "включено" и "выключено" мы будем рассматривать в следующих главах. Электромагнитное реле выполняет ту же самую функцию, но его скорость переключения очень медленная с точки зрения современной электроники, да и коммутирующие контакты быстро изнашиваются.

Что из себя представляет транзисторный ключ? Давайте рассмотрим его поближе:



Знакомая схемка не так ли? Здесь все элементарно и просто;-) Подаем на базу напряжение необходимого номинала и у нас начинает течь ток через цепь от плюсовой клеммы +Bat2 --->лампочка--->коллектор--->эмиттер--->к минусовой клемме Bat2 . Напряжение на Bat2 должно быть равно рабочему напряжению питания лампочки. Если все так, то лампочка испускает свет. Вместо лампочки может быть какая-либо другая нагрузка. Резистор "R " здесь требуется для того, чтобы ограничить значение управляющего тока на базе транзистора. Про него более подробно я писал еще в этой статье.

Но все ли так просто, как кажется на первый взгляд?

Итак, давайте вспомним, какие требования должны быть, чтобы полностью "открыть" транзистор? Читаем статью принцип усиления биполярного транзистора и вспоминаем:

1) Для того, чтобы полностью открыть транзистор, напряжение база-эмиттер должно быть больше 0,6-0,7 Вольт.

Транзисторный ключ является основным элементом устройств цифровой электроники и очень многих устройств силовой электроники. Параметры и характеристики транзисторного ключа в очень большой степени определяют свойства соответствующих схем.

Ключи на биполярных транзисторах . Простейший ключ на биполярном транзисторе, включенный по схеме с общим эмиттером, и соответствующая временная диаграмма входного напряжения представлены на рис. 14.5.

Рис. 14.5. Ключ на биполярном транзисторе

Рассмотрим работу транзисторного ключа в установившихся режимах. До момента времени t 1 эмиттерный переход транзистора заперт и транзистор находится в режиме отсечки. В этом режимеi к =i б =I ко (I ко – обратный ток коллектора),i э ≈ 0. При этомu R б u R к ≈ 0;u бэ ≈ –U 2 ;u кэ –Е к .

В промежутке времени t 1 t 2 транзистор открыт. Для того, чтобы напряжение на транзистореu кэ было минимальным, напряжениеU 1 обычно выбирают так, чтобы транзистор находится или в режиме насыщения, или в пограничном режиме, очень близким к режиму насыщения.

Ключи на полевых транзисторах отличаются малым остаточным напряжением. Они могут коммутировать слабые сигналы (в единицы микровольт и меньше). Это следствие того, что выходные характеристики полевых транзисторов проходят через начало координат.

Для примера изобразим выходные характеристики транзистора с управляющим переходом и каналом p -типа в области, прилегающей к началу координат (рис. 14.6).

Рис. 14.6. Полевой транзистор с каналом p-типа

Обратим внимание, что характеристики в третьем квадранте соответствуют заданным напряжениям между затвором и стоком.

В статическом состоянии ключ на полевом транзисторе потребляет очень малый ток управления. Однако этот ток увеличивается при увеличении частоты переключения. Очень большое входное сопротивление ключей на полевых транзисторах фактически обеспечивает гальваническую развязку входных и выходных цепей. Это позволяет обойтись без трансформаторов в цепях управления.

На рис. 14.7 приведена схема цифрового ключа на МДП-транзисторе с индуцированным каналом n -типа и резистивной нагрузкой и соответствующие временные диаграммы.


Рис. 14.7. Цифровой ключ на полевом транзисторе

На схеме изображена емкость нагрузки С н , моделирующая емкость устройств, подключенных к транзисторному ключу. Очевидно, что при нулевом входном сигнале транзистор заперт иu си =Е с . Если напряжениеuвх больше порогового напряженияU зи.порог транзистора, то он открывается и напряжениеu си уменьшается.

Логические элементы

Логический элемент (логический вентиль) – это электронная схема, выполняющая некоторую простейшую логическую операцию. На рис. 14.8 приведены примеры условных графических обозначений некоторых логических элементов.

Рис. 14.8. Логические элементы

Логический элемент может быть реализован в виде отдельной интегральной схемы. Часто интегральная схема содержит несколько логических элементов.

Логические элементы используются в устройствах цифровой электроники (логических устройствах) для выполнения простого преобразования логических сигналов.

Классификация логических элементов. Выделяются следующие классы логических элементов (так называемые логики):

    резисторно-транзисторная логика (ТРЛ);

    диодно-транзисторная логика (ДТЛ);

    транзисторно-транзисторная логика (ТТЛ);

    эмиттерно-транзисторная логика (ЭСЛ);

    транзисторно-транзисторная логика с диодами Шоттки (ТТЛШ);

    р (р -МДП);

    логика на основе МОП-транзисторов с каналами типа n (n -МДП);

    логика на основе комплементарных ключей на МДП-транзисторах (КМДП, КМОП);

    интегральная инжекционная логика И 2 Л;

    логика на основе полупроводника из арсенида галлия GaAs.

В настоящее время наиболее широко используются следующие логики: ТТЛ, ТТЛШ, КМОП, ЭСЛ. Логические элементы и другие цифровые электронные устройства выпускаются в составе серий микросхем: ТТЛ – К155, КМ155, К133, КМ133; ТТЛШ – 530, КР531, КМ531, КР1531, 533, К555, Км555, 1533, КР1533; ЭСЛ – 100, К500, К1500; КМОП – 564, К561, 1564, КР1554; GaAs– К6500.

Наиболее важные параметры логических элементов:

    Быстродействие характеризуется временем задержки распространения сигнала t зр и максимальной рабочей частотойF макс . Время задержки принято определять по перепадам уровней 0,5U вх и 0,5ΔU вых . Максимальная рабочая частотаF макс – это частота, при которой сохраняется работоспособность схемы.

    Нагрузочная способность характеризуется коэффициентом объединения по входу К об (иногда используют термин «коэффициент объединения по выходу»). ВеличинаК об – это число логических входов, величинаК раз максимальное число однотипных логических элементов, которые могут быть подключены к выходу данного логического элемента. Типичные значения их таковы:К об =2…8,К раз =4…10. Для элементов с повышенной нагрузочной способностьюК раз =20…30.

    Помехоустойчивость в статическом режиме характеризуется напряжением U пст , которое называется статической помехоустойчивостью. Это такое максимально допустимое напряжение статической помехи на входе, при котором еще не происходит изменение выходных уровней логического элемента.

    Мощность, потребляемая микросхемой от источника питания. Если эта мощность различна для двух логических состояний, то часто указывают среднюю потребляемую мощность для этих состояний.

    Напряжение питания.

    Входные пороговые напряжения высокого и низкого уровня U вх.1порог иU вх.0порог , соответствующие изменению состояния логического элемента.

    Выходные напряжения высокого и низкого уровней U вых1 иU вых0 .

Используются и другие параметры.

Особенности логических элементов различных логик. Для конкретной серии микросхем характерно использование типового электронного узла – базового логического элемента. Этот элемент является основой построения самых разнообразных цифровых электронных устройств.

    Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 14.9).


Рис. 14.9. Базовый элемент ТТЛ

Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмитттерный транзистор находится в состоянии насыщения и транзистор Т 2 закрыт, а следовательно, закрыт и транзистор Т 4 , т. е. на выходе будет высокий уровень напряжения. Если на обоих входах одновременно действует высокий уровень напряжения, то транзистор Т 2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т 4 и запиранию транзистора Т 3 , т.е. реализуется функция И-НЕ. Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами или транзисторами Шоттки.

    Базовый логический элемент ТТЛШ (на примере серии К555). В качестве базового элемента серии микросхем К555 использован элемент

И-НЕ (рис. 14.10,а ), а на рис. 14.10,б показано графическое изображение транзистора Шоттки.


Рис. 14.10. Логический элемент ТТЛШ

Транзистор VT4 – обычный биполярный транзистор. Если оба входных напряженияu вх1 иu вх2 имеют высокий уровень, то диодыVD3 иVD4 закрыты, транзисторыVT1,VT5 открыты и на выходе имеет место напряжение низкого уровня. Если хотя бы на одном входе имеется напряжение низкого уровня, то транзисторыVT1 иVT5 закрыты, а транзисторыVT3 иVT4 открыты, и на входе имеет место напряжение низкого уровня. Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

    напряжение питания +5 В ;

    выходное напряжение низкого уровня не более 0,4 В ;

    выходное напряжение высокого уровня не менее 2,5 В ;

    помехоустойчивость – не менее 0,3 В;

    среднее время задержки распространения сигнала 20 нс ;

    максимальная рабочая частота 25 МГц .

Особенности других логик. Основой базового логического элемента ЭСЛ является токовый ключ, схема которого подобна схеме дифференциального усилителя. Микросхема ЭСЛ питается отрицательным напряжением (–4В для серии К1500). Транзисторы этой микросхемы не входят в режим насыщения, что является одной из причин высокого быстродействия элементов ЭСЛ.

В микросхемах n -МОП иp -МОП используются ключи соответственно на МОП-транзисторах сn -каналами и динамической нагрузкой и на МОП-транзисторах сp -каналом. Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП-логические элементы (КМДП или КМОП-логика).

Логика на основе полупроводника из арсенида галлия GaAsхарактеризуется наиболее высоким быстродействием, что является следствием высокой подвижности электронов (в 3…6 раз больше по сравнению с кремнием). Микросхемы на основеGaAsмогут работать на частотах порядка 10ГГц .

Транзисторные ключи построенные на биполярных или полевых транзисторах делятся на насыщенные и ненасыщенные, а также на МДП-ключи и ключи на полевых транзисторах с управляющим р-n-переходом. Все транзисторные ключи могут работать в двух режимах: статическом и динамическом.

На их основе ТК базируется принцип работы триггеров, мультивибраторов, коммутаторов, блокинг-генераторы и многих других элементов. В зависимости от назначения и особенностей работы схемы ТК могут отличаться друг от друга.

ТК предназначен для коммутации цепей нагрузки под воздействием внешних управляющих сигналов, смотри схему выше. Любой ТК выполняет функции быстродействующего ключа и имеет два главных состояния: разомкнутое, ему соответствует режим отсечки транзистора (VT - закрыт), и замкнутое, характеризуется режимом насыщения или режимом, приближенном к нему. В течение всего процесса переключения ТК работает в активном режиме.

Рассмотрим работу ключа на основе биполярного транзистора. Если на базе отсутствует напряжение относительно эмиттера, транзистор закрыт, ток через него не течет, на коллекторе всё напряжение питания, т.е. максимальный уровень сигнала.

Как только на базу транзистора поступает управляющий электрический сигнал, он открывается, начинает течь ток коллектор-эмиттер и происходит падение напряжения на внутреннем сопротивлении коллектора, затем, напряжение на коллекторе, а с ним и напряжение на выходе схемы, снижаются до низкого уровня.


Для практики соберем простую схему транзисторного ключа на биполярном транзисторе. Используем для этого биполярный транзистор КТ817, резистор в коллекторной цепи питания номиналом 1 кОм, а по входу сопротивлением 270 Ом.



В открытом состоянии транзистора на выходе схемы имеем полное напряжение источника питания. При поступлении сигнала на управляющий вход напряжение на коллекторе ограничивается до минимума, где-то 0,6 вольт.

Кроме того, ТК можно реализовать и на полевых транзисторах. Принцип их работы почти аналогичен, но ни потребляют значительно меньший ток управления, а кроме того обеспечивают гальваническую развязку входных и выходных частей, но существенно проигрывают в быстродействие по сравнению с биполярными. Транзисторные ключи используются практически в любом спектре радиоэлектронных устройств аналоговых и цифровых коммутаторах сигналов, системах автоматики и контроля, в современной бытовой технике и т.п

Для коммутации нагрузок в цепях переменного тока лучше всего применять мощные полевые транзисторы. Этот класс полупроводников представлен двумя группами. К первой относят гибриды: биполярные транзисторы с изолированным затвором - БТИЗ или . Во вторую, входят классические полевые (канальные) транзисторы. Рассмотрим в качестве практического примера работу коммутатора нагрузки для сети переменного напряжения 220 вольт на мощном полевом VT типа КП707


Данная конструкция позволяет гальванически развязать цепи управления и цепь 220 вольт. В качестве развязки использованы оптроны TLP521. Кода напряжение на входных клеммах отсутствует, светодиод оптрона не горит, встроенный транзистор оптрона закрыт и не шунтирует затвор мощных полевых коммутирующих транзисторов. Поэтому, на их затворах имеется открывающее напряжение, равное уровню напряжения стабилизации стабилитрона VD1. В этом случае полевики открыты и работают по очереди, в зависимости от полярности периода переменного напряжения в текущий момент времени. Допусти, на выводе 4 , а на 3 - минус. Тогда ток нагрузки идет от клеммы 3 к 5, через нагрузку и к 6, затем через внутренний защитный диод VT2, через открытый VT1 к клемме 4. При смене периода, ток нагрузки идет уже через диод транзистора VT1 и открытый VT2. Элементы схемы R3, R3, C1 и VD1 это безтрансформаторный источник питания. Номинал резистора R1 соответствует входному уровню напряжению пять вольт и может быть изменен при необходимости. При поступление управляющего сигнала светодиод в оптроне загорается и шунтирует затворы обоих транзисторов. На нагрузку напряжение не поступает.

Транзисторный ключ являются основным компонентом в импульсной преобразовательной технике. В схемах всех импульсных источников питания, которые практически полностью вытеснили трансформаторные источники питания, применяются транзисторные ключи. Примером таких источников питания являются компьютерные блоки питания, зарядные устройства телефонов, ноутбуков, планшетов и т. п. Транзисторные ключи пришли на смену электромагнитных реле, поскольку обладают таким основным преимуществом как отсутствие механических подвижных частей в результате чего увеличивается надежность и долговечность ключа. Кроме того скорость включения и выключения электронных полупроводниковых ключей значительно выше скорости электромагнитных реле.

Также транзисторный ключ часто используется для включения-выключения (коммутации) нагрузки значительной мощности по сигналу микроконтроллера.

Суть электронного ключа заключается в управлении им большой мощностью по сигналу малой мощности.

Существуют полупроводниковые ключи на базе транзисторов, тиристоров, симисторов. Однако в данной статье рассмотрена работа электронного ключа на биполярном транзисторе. В последующих статьях будут рассмотрены и другие типы полупроводниковых ключей.

В зависимости от полупроводниковой структуры биполярные транзисторы разделяют на два вида: p n p и n p n типа (рис. 1 ).

Рис. 1 – Структуры биполярных транзисторов

В схемах биполярные транзисторы обозначаются, как показано на рис. 2 . Средний вывод называется базой, вывод со “стрелочкой” – эмиттер, оставшийся вывод – коллектор.


Рис. 2 – Обозначение транзисторов в схемах

Также транзисторы условно можно изобразить в виде двух диодов, которые включены встречно, место соединения их всегда будет базой (рис.3 ).

Рис. 3 – Схемы замещения транзисторов диодами

Транзисторный ключ. Схемы включения.

Схемы включения транзисторов разных полупроводниковых структур показаны на рис. 4 . Переход между базой и эмиттером называется эмиттерный переход, а переход между базой и коллектором – коллекторный переход. Для включения (открытия) транзистора необходимо чтобы коллекторный переход был смещен в обратном направлении, а эмиттер – в прямом.


Рис. 4 – Транзисторный ключ. Схемы включения

Напряжение источника питания U ип прикладывается к выводам коллектора и эмиттера U кэ через нагрузочный резистор R к (см. рис. 4 ). Напряжение управления (управляющий сигнал) подается между базой и эмиттером U бэ через токоограничивающий резистор R б .

Когда транзистор работает в ключевом режиме он может находиться в двух состояниях. Первое – это режим отсечки. В это режиме транзистор полностью закрыт, а напряжение между коллектором и эмиттером равно напряжению источника питания. Второе состояние – это режим насыщения. В этом режиме транзистор полностью открыт, а напряжение между коллектором и эмиттером равно падению напряжения на p n – переходах и для различных транзисторов находится в пределах от сотых до десятых вольта.

На нагрузочной прямой входной статической характеристики транзистора (рис. 5 ) область насыщения находится на отрезке 1-2 , а область отсечки на отрезке 3-4 . Промежуточная область между этими отрезками – область 2-3 называется активной областью. Ею руководствуются когда транзистор работает в режиме усилителя.


Рис. 5 – Входная статическая характеристика транзистора

Для того, чтобы проще запомнить полярность подключения источника питания и напряжения сигнала управления следует обратить внимание на стрелку эмиттера. Она указывает направление протекания тока (рис.6 ).


Рис. 6 – Путь протекания тока через транзисторный ключ

Расчет параметров транзисторного ключа

Для примера работы ключа в качестве нагрузки будем использовать светодиод. Схема его подключения показана на рис. 7 . Обратите внимание на полярность подключения источников питания и светодиода в транзисторах разных полупроводниковых структур.


Рис. 7 – Схемы подключения светодиода к транзисторным ключам

Рассчитаем основные параметры транзисторного ключа, выполненного на транзисторе n p n типа. Пусть имеем следующие исходные данные:

— падение напряжения на светодиоде Δ U VD = 2 В ;

номинальный ток светодиода I VD = 10 мА ;

— напряжение источника питания U ип (на схеме обозначено Uкэ) = 9 В ;

— напряжение входного сигнала U вс = 1,6 В .

Теперь взглянем еще раз на схему, показанную на рис. 7 . Как мы видим, осталось определить сопротивления резисторов в цепи базы и коллектора. Транзистор можно выбрать любой биполярный соответствующей полупроводниковой структуры. Возьмем для примера советский транзистор n p n типа МП111Б .

Расчет сопротивления в цепи коллектора транзистора

Сопротивление в цепи коллектора предназначено для ограничения тока, который протекает через светодиод VD , а также для защиты от перегрузки самого транзистора. Поскольку, когда транзистор откроется, ток в его цепи будет ограничиваться только сопротивлением светодиода VD и резистора R к .

Определим сопротивление R к . Оно равно падению напряжения на нем Δ U R к деленному на ток в цепи коллектора I к :


Так коллектора нами задан изначально, – это номинальный ток светодиода. Он не должен превышать I к=10мА .

Теперь найдем падение напряжения на резисторе R к . Оно равно напряжению источник питания U ип (U кэ ) минус падение напряжения на светодиоде Δ U VD и минус падение напряжения на транзисторе ΔU кэ :

Падение напряжение на светодиоде, как и напряжение источника питания изначально заданы и равны 0,2В и 9В соответственно. Падение напряжения для транзистора МП111Б, как и для других советских транзисторов, принимаем равным порядка 0,2 В. Для современный транзисторов (например BC547, BC549, N2222 и других) падение напряжение составляет порядка 0,05 В и ниже.

Падение напряжения на транзисторе можно измерить, когда он полностью открыт, между выводами коллектора и эмиттера и в дальнейшем скорректировать расчет. Но, как мы увидим дальше, сопротивление коллектора можно подобрать более простым методом.

Сопротивление в цепи коллектора равно:

Расчет сопротивления в цепи базы транзистора

Теперь нам осталось определить сопротивление базы R б . Оно равно падению напряжения на самом сопротивлении ΔURб деленному на ток базы I б :


Падение напряжения на базе транзистора равно напряжению входного сигнала Uвс минус падение напряжения на переходе база-эмиттер ΔUбэ . Напряжение входного сигнала задано в исходных данных и равно 1,6 В. Падение напряжения между базой и эмиттером равно порядка 0,6 В.

Далее найдем ток базы . Он равен току коллектора деленному на коэффициент усиления транзистора по току β . Коэффициент усиления для каждого транзистора приводится в даташитах или в справочниках. Еще проще узнать значение β можно воспользовавшись мультиметром. Даже самый простой мультиметр имеет такую функцию. Для данного транзистора β=30 . У современных транзисторов β равен порядка 300…600 единиц.

Теперь мы можем найти необходимое сопротивление базы.

Таким образом, воспользовавшись выше изложенной методикой, можно легко определить необходимые номиналы резисторов в цепи базы и коллектора. Однако нужно помнить, что расчетные данные не всегда позволяют точно определить номиналы резисторов. Поэтому более тонкую настройку ключа лучше выполнять опытный путем, а расчеты необходимы лишь для первичной прикидкы, то есть помогают сузить диапазон выбора номиналов резисторов.

Чтобы определить номиналы резисторов нужно последовательно с резисторами базы и коллектора включить переменный резистор и изменяя его величину получить необходимые значения токов базы и коллектора (рис. 8 ).


Рис. 8 – Схема включения переменных резисторов

Рекомендации по выбору транзисторов для электронных ключей

    Номинальное напряжение между коллектором и эмиттером, которое указывается производителем, должно быть выше напряжения источника питания.

    Номинальный ток коллектора, который также указывается производителем, должен быть больше тока нагрузки.

    Необходимо следить за тем, чтобы ток и напряжение базы транзистора не превышали допустимых значений.

  1. Также напряжение на базе в режиме насыщения не должно быть ниже минимально значения, иначе транзисторный ключ будет работать нестабильно.

О какой нагрузке идет речь? Да о любой — релюшки, лампочки, соленоиды, двигатели, сразу несколько светодиодов или сверхмощный силовой светодиод-прожектор. Короче, все что потребляет больше 15мА и/или требует напряжения питания больше 5 вольт.

Вот взять, например, реле. Пусть это будет BS-115C. Ток обмотки порядка 80мА, напряжение обмотки 12 вольт. Максимальное напряжение контактов 250В и 10А.

Подключение реле к микроконтроллеру это задача которая возникала практически у каждого. Одна проблема — микроконтроллер не может обеспечить мощность необходимую для нормальной работы катушки. Максимальный ток который может пропустить через себя выход контроллера редко превышает 20мА и это еще считается круто — мощный выход. Обычно не более 10мА. Да напряжение у нас тут не выше 5 вольт, а релюшке требуется целых 12. Бывают, конечно, реле и на пять вольт, но тока жрут больше раза в два. В общем, куда реле не целуй - везде жопа. Что делать?

Первое что приходит на ум — поставить транзистор. Верное решение — транзистор можно подобрать на сотни миллиампер, а то и на амперы. Если не хватает одного транзистора, то их можно включать каскадами, когда слабый открывает более сильный.

Поскольку у нас принято, что 1 это включено, а 0 выключено (это логично, хотя и противоречит моей давней привычке, пришедшей еще с архитектуры AT89C51), то 1 у нас будет подавать питание, а 0 снимать нагрузку. Возьмем биполярный транзистор. Реле требуется 80мА, поэтому ищем транзистор с коллекторным током более 80мА. В импортных даташитах этот параметр называется I c , в наших I к. Первое что пришло на ум — КТ315 — шедевральный совковый транзистор который применялся практически везде:) Оранжевенький такой. Стоит не более одного рубля. Также прокатит КТ3107 с любым буквенным индексом или импортный BC546 (а также BC547, BC548, BC549). У транзистора, в первую очередь, надо определить назначение выводов. Где у него коллектор, где база, а где эмиттер. Сделать это лучше всего по даташиту или справочнику. Вот, например, кусок из даташита:

Если смотреть на его лицевую сторону, та что с надписями, и держать ножками вниз, то выводы, слева направо: Эмиттер, Колектор, База.

Берем транзистор и подключаем его по такой схеме:

Коллектор к нагрузке, эмиттер, тот что со стрелочкой, на землю. А базу на выход контроллера.

Транзистор это усилитель тока, то есть если мы пропустим через цепь База-Эмиттер ток, то через цепь Колектор-Эмиттер сможет пройти ток равный входному, помноженному на коэффициент усиления h fe .
h fe для этого транзистора составляет несколько сотен. Что то около 300, точно не помню.

Максимальное напряжение вывода микроконтроллера при подаче в порт единицы = 5 вольт (падением напряжения в 0.7 вольт на База-Эмиттерном переходе тут можно пренебречь). Сопротивление в базовой цепи равно 10000 Ом. Значит ток, по закону Ома, будет равен 5/10000=0.0005А или 0.5мА — совершенно незначительный ток от которого контроллер даже не вспотеет. А на выходе в этот момент времени будет I c =I be *h fe =0.0005*300 = 0.150А. 150мА больше чем чем 100мА, но это всего лишь означает, что транзистор откроется нараспашку и выдаст максимум что может. А значит наша релюха получит питание сполна.

Все счастливы, все довольны? А вот нет, есть тут западло. В реле же в качестве исполнительного элемента используется катушка. А катушка имеет неслабую индуктивность, так что резко оборвать ток в ней невозможно. Если это попытаться сделать, то потенциальная энергия, накопленная в электромагнитом поле, вылезет в другом месте. При нулевом токе обрыва, этим местом будет напряжение — при резком прерывании тока, на катушке будет мощный всплеск напряжения, в сотни вольт. Если ток обрывается механическим контактом, то будет воздушный пробой — искра. А если обрывать транзистором, то его просто напросто угробит.

Надо что то делать, куда то девать энергию катушки. Не проблема, замкнм ее на себя же, поставив диод. При нормальной работе диод включен встречно напряжению и ток через него не идет. А при выключении напряжение на индуктивности будет уже в другую сторону и пройдет через диод.

Правда эти игры с бросками напряжения гадским образом сказываются на стабильности питающей сети устройства, поэтому имеет смысл возле катушек между плюсом и минусом питания вкрутить электролитический конденсатор на сотню другую микрофарад. Он примет на себя большую часть пульсации.

Красота! Но можно сделать еще лучше — снизить потребление. У реле довольно большой ток срывания с места, а вот ток удержания якоря меньше раза в три. Кому как, а меня давит жаба кормить катушку больше чем она того заслуживает. Это ведь и нагрев и энергозатраты и много еще чего. Берем и вставляем в цепь еще и полярный конденсатор на десяток другой микрофарад с резистором. Что теперь получается:

При открытии транзистора конденсатор С2 еще не заряжен, а значит в момент его заряда он представляет собой почти короткое замыкание и ток через катушку идет без ограничений. Недолго, но этого хватает для срыва якоря реле с места. Потом конденсатор зарядится и превратится в обрыв. А реле будет питаться через резистор ограничивающий ток. Резистор и конденсатор следует подбирать таким образом, чтобы реле четко срабатывало.
После закрытия транзистора конденсатор разряжается через резистор. Из этого следует встречное западло — если сразу же попытаться реле включить, когда конденсатор еще не разрядился, то тока на рывок может и не хватить. Так что тут надо думать с какой скоростью у нас будет щелкать реле. Кондер, конечно, разрядится за доли секунды, но иногда и этого много.

Добавим еще один апгрейд.
При размыкании реле энергия магнитного поля стравливается через диод, только вот при этом в катушке продолжает течь ток, а значит она продолжает держать якорь. Увеличивается время между снятием сигнала управления и отпаданием контактной группы. Западло. Надо сделать препятствие протеканию тока, но такое, чтобы не убило транзистор. Воткнем стабилитрон с напряжением открывания ниже предельного напряжения пробоя транзистора.
Из куска даташита видно, что предельное напряжение Коллектор-База (Collector-Base voltage) для BC549 составляет 30 вольт. Вкручиваем стабилитрон на 27 вольт — Profit!

В итоге, мы обеспечиваем бросок напряжения на катушке, но он контроллируемый и ниже критической точки пробоя. Тем самым мы значительно (в разы!) снижаем задержку на выключение.

Вот теперь можно довольно потянуться и начать мучительно чесать репу на предмет того как же весь этот хлам разместить на печатной плате… Приходится искать компромиссы и оставлять только то, что нужно в данной схеме. Но это уже инженерное чутье и приходит с опытом.

Разумеется вместо реле можно воткнуть и лампочку и соленоид и даже моторчик, если по току проходит. Реле взято как пример. Ну и, естественно, для лампочки не потребуется весь диодно-конденсаторный обвес.

Пока хватит. В следующий раз расскажу про Дарлингтоновские сборки и MOSFET ключи.