Унификация методов количественного определения лекарственных средств - реферат. Методы анализа лекарственных средств Химические методы анализа лекарственных форм

5 / 5 ( голосов: 1 )

Сегодня довольно часто можно обнаружить некачественные лекарства и таблетки-пустышки, которые вызывают у потребителя сомнения по поводу их эффективности. Существуют определенные методы анализа лекарственных средств, позволяющие с максимальной точностью определить состав лекарства, его характеристики, а это позволит выявить степень влияния лекарственного средства на организм человека. Если у вас есть определенные жалобы на лекарственный препарат, тогда его химическая экспертиза и объективное заключение могут быть доказательством в любом судебном разбирательстве.

Какие методы анализа лекарственных средств используют в лабораториях?

Для установления качественных и количественных характеристик лекарства в специализированных лабораториях широко применяют такие методы:

  • Физические и физико-химические, которые помогают определить температуру плавления и затвердевания, плотность, состав и чистоту примесей, найти содержание тяжелых металлов.
  • Химические, определяющие наличие летучих веществ, воды, азота, растворимость лекарственного вещества, его кислотное, йодное число и т. д.
  • Биологические, позволяющие испытать вещество на стерильность, микробную чистоту, содержание токсинов.

Методы анализа лекарственных средств позволят установить подлинность заявленного производителем состава и определят малейшие отклонения от норм и технологии производства. В лаборатории АНО «Центр химических экспертиз» есть все необходимое оборудование для точного исследования любого вида лекарства. Высококвалифицированные специалисты применяют разнообразные методы анализа лекарственных средств и в кратчайшие сроки предоставят объективное заключение экспертизы.

В современном фармацевтическом анализе стали широко применяться неводные растворители. Если раньше основным растворителем в анализе была вода, то теперь одновременно применяют и разнообразные неводные растворители (ледяную или безводную уксусную кислоту, уксусный ангидрид, диметил-формамид, диоксан и др.), позволяющие изменять силу основ-ности и кислотности анализируемых веществ. Получил разви-тие микрометод, в частности капельный метод анализа, удобный для использования во внутриаптечном контроле качества ле-карств.

Широкое развитие в последние годы получают такие методы исследования, при которых используют сочетание различных ме-тодов при анализе лекарственных веществ. Например, хромато-масс-спектрометрия - это сочетание хроматографии и масс-спектрометрии. В современный фармацевтический анализ все больше проникает физика, квантовая химия, математика.

Анализ любого лекарственного вещества или сырья необхо-димо начинать с внешнего осмотра, обращая при этом внима-ние на цвет, запах, форму кристаллов, тару, упаковку, цвет стекла. После внешнего осмотра объекта анализа берут сред-нюю пробу для анализа согласно требованиям ГФ X (с. 853).

Методы исследования лекарственных веществ подразделя-ются на физические, химические, физико-химические, биологи-ческие.

Физические методы анализа предусматривают изучение фи-зических свойств вещества, не прибегая к химическим реакци-ям. К ним относятся: определение растворимости, прозрачности

  • или степени мутности, цветности; определение плотности (для жидких веществ), влажности, температуры плавления, затвер-девания, кипения. Соответствующие методики описаны в ГФ X .(с. 756-776).

Химические методы исследования основаны на химических реакциях. К ним относятся: определение зольности, реакции среды (рН), характерных числовых показателей масел и жиров (кислотное число, йодное число, число омыления и т. д.).

Для целей идентификации лекарственных веществ исполь-зуют только такие реакции, которые сопровождаются нагляд-ным внешним эффектом, например изменением окраски раство-ра, выделением газов, выпадением или растворением осадков и т. п.

К химическим методам исследования относятся также весо-вые и объемные методы количественного анализа, принятые в аналитической химии (метод нейтрализации, осаждения, редокс-методы и др.). В последние годы в фармацевтический ана-лиз вошли такие химические методы исследования, как титро-вание в неводных средах, комплексометрия.

Качественный и количественный анализ органических лекар-ственных веществ, как правило, проводят по характеру функ-циональных групп в их молекулах.

С помощью физико-химических методов изучают физические явления, которые происходят в результате химических реакций. Например, в колориметрическом методе измеряют интенсив-ность окраски в зависимости от концентрации вещества, в кон-дуктометрическом анализе - измерение электропроводности растворов и т. д.

К физико-химическим методам относятся: оптические (реф-рактометрия, поляриметрия, эмиссионный и флюоресцентный методы анализа, фотометрия, включающая фотоколориметрию и спектрофотометрию, нефелометрия, турбодиметрия), электро-химические (потенциометрический и полярографический мето-ды), хроматографические методы.

Унификация методов количественного определения лекарственных средств

Количественное определение – это заключительный этап фармацевтического анализа. Выбор оптимального метода количественного определения зависит от возможности оценить лекарственное средство по фармакологически активной части молекулы. Практически это сделать сложно, поэтому обычно количественное определение препарата проводят по одному его химическому свойству, связанному с наличием той или иной функциональной группы, атома, катиона или аниона, а в ряде случаев по количеству связанной с органическим основанием минеральной кислоты. Например: папаверина гидрохлорид можно количественно определить по связанной хлористоводородной кислоте, но это допускается только при экспресс-анализе в условиях аптеки.

Существует значительное различие в анализе субстанций лекарственных веществ и их лекарственных форм. Условия применения методов количественного анализа в лекарственных формах зависит от состава лекарственной смеси и физико-химических свойств всех, входящих в неё ингредиентов. При анализе многокомпонентных лекарственных смесей используют два подхода: количественное определение без предварительного разделения ингредиентов и с их разделением. При выборе способов количественного определения без разделения ингредиентов необходимо убедиться, что сопутствующие ингредиенты не влияют на результаты анализа.

Классификация методов количественного определения лекарственных веществ

Физические

Химические

Физико-химические

Биологические

1. Определение плотности.

2. Температуры кипения.

1. Гравиметрия.

2. Титриметрические методы:

Осадительное титрование;

Кислотно-основное;

Окислительно – восстано-вительное титрование;

Комплексонометрия;

Нитритометрия.

3. Элементный анализ.

4. Газометрические методы.

1. Абсорбционные методы.

2. Оптические методы.

3. Методы, основанные на испускании излучения.

4. Методы, основанные на использовании магнитного поля.

5. Электрохимические

6. Методы разделения.

7. Термические методы.

1. Испытания на токсичность.

2. Испытания на пирогенность.

4. Микробиологическая чистота.

Физические методы

Эти методы используют для количественного определения, например , этилового спирта. ФС рекомендует устанавливать содержание спирта этилового по плотности, либо по температуре кипения водно-спиртовых растворов (в том числе настоек) по методикам ОФС ГФ.

Химические методы

1. Весовой метод (гравиметрия)

Метод основан на том, что из исследуемого вещества, взятого в виде точной навески на аналитических весах или в определенном объеме, отмеренном при помощи бюретки или пипетки, выделяют посредством химических реакций составную часть в виде осадка. Этот осадок отфильтровывают и взвешивают. Для расчета количественного содержания вещества в препарате используют формулу. Метод отличается высокой точностью, но трудоемок.

Гравиметрически количественно определяют соли хинина, которые под действием раствора щелочи образуют осадок основания хинина; алкалоиды, осажденные в виде пикратов; натриевые соли барбитуратов, которые при действии кислоты образуют осадки кислотных форм; некоторые витамины, образующие нерастворимые в воде продукты гидролиза.

2. Титриметрические (объемные) методы

Отличаются значительно меньшей трудоемкостью, чем гравиметрический метод, и достаточно высокой точностью.

Осадительное титрование

Метод основан на использовании реакций осаждения или образования малодиссоциированных соединений.

Аргентометрия

Метод основан на реакциях осаждения галогенидов раствором нитрата серебра.

KCI + AgNO 3 → AgCI ↓ + KNO 3 Э = М.м.

Прямое титрование: Метод Мора : среда нейтральная, индикатор - хромат калия, определяют Cl - и Br - . Метод Фаянса: среда уксуснокислая, индикатор - флуоресцеин (Cl -) и эозинат натрия (I - , Br -).

Обратное титрование (роданометрия, тиоцианометрия): Метод Фольгарда: среда азотнокислая, индикатор - железоаммониевые квасцы, титранты - AgNO 3 и NH 4 CNS, в точке эквивалентности появляется красное окрашивание. Косвенный метод Фольгарда: сначала после добавления 0,1 мл 0,1 М раствора NH 4 CNS появляется красное окрашивание от взаимодействия с индикатором, а затем титруют раствором AgNO 3 до обесцвечивания.

Аргентометрически определяют галогениды щелочных металлов, четвертичных аммониевых оснований, соли галогеноводородных кислот органических оснований, сульфамидов.

Например : сульфаниламиды образуют соли серебра в виде белого осадка.

Аргентометрический метод отличается высокой чувствительностью, правильностью и воспроизводимостью, прост в исполнении. Однако значительный расход дорогостоящего серебра настоятельно требует его замены.

Меркуриметрия

Метод основан на образовании слабодиссоциированных соединений ртути (II).

Точку эквивалентности устанавливают потенциометрически или с помощью индикаторов – дифенилкарбазида или дифенилкарбазона, которые образуют с избытком ионов ртути (II) окрашенные в красно-фиолетовый цвет соединения.

При анализе йодидов возможен безиндикаторный метод .

2KI + Hg(NO 3) 2 → HgI 2 ↓ + 2KNO 3 (красный осадок)

HgI 2 + 2 KI → K 2 HgI 4 (бесцветный)

K 2 HgI 4 + Hg(NO 3) 2 → 2HgI 2 ↓ + 2KNO 3 (красный осадок)

Э= 2 М.м. Титруют до устойчивой красной мути.

Кислотно-основное титрование (метод нейтрализации)

Это методы количественного определения лекарственных веществ, обладающих кислотными и основными свойствами в водной или неводной среде.

Растворимые в воде вещества, обладающие кислыми свойствами, титруют сильными основаниями (алкалиметрия), а вещества основного характера – растворами сильных кислот (ацидиметрия). Наиболее часто используют при титровании индикаторы: метиловый оранжевый, метиловый красный, бромтимоловый синий, фенолфталеин, тимолфталеин.

Ацидиметрия

Алкалиметрия

Водная среда

Прямое титрование

Титруют хлористоводородной кислотой натриевые соли неорганических кислот.

Например :

NaHCO 3 + HCl → NaCl + CO 2 + H 2 O

Прямое титрование

Титруют неорганические кислоты, вещества гетероциклической структуры, содержащие в молекуле группу –COOH.

Например: HCl + NaOH → NaCl + H 2 O

Обратное титрование

(сочетание с гидролизом)

Лекарственные вещества, представляющие собой сложные эфиры или амиды предварительно гидролизуют раствором щелочи, избыток которого затем оттитровывают кислотой.

+ 2NaOH →

СН 3 СООNa + Н 2 О

NaOH + HCl → NaCl + H 2 O

Обратное титрование

(сочетание с гидролизом)

Гидролиз сложных эфиров или амидов обычно выполняют титрованным раствором кислоты, а избыток её оттитровывают щелочью (например, уротропин).

Параллельно проводят контрольный опыт.

Косвенное определение

Алкалоиды теобромина и теофиллина осаждают ионами серебра, при этом выделяется эквивалентное количество азотной кислоты, которую оттитровывают щелочью.

N-H + AgNO 3 → N-Ag ↓ + HNO 3

HNO 3 + NaOH → NaNO 3 + H 2 O

Титрование в смешанных растворителях

Иногда органическое основание извлекают хлороформом или эфиром, растворитель отгоняют и титруют основание ацидиметрическим методом.

N − + HCI → N − . HCI

Смешанные растворители состоят из воды и органических растворителей. Их применяют, когда препарат плохо растворим в воде или водные растворы имеют слабовыраженные кислотные или щелочные свойства.

Например : салициловая кислота растворяется в спирте и титруется водным раствором NaOH.

Некоторые лекарственные вещества при растворении в смешанных растворителях изменяют кислотно-основные свойства.

Например: борная кислота при растворении в смеси воды и глицерина усиливает кислотные свойства вследствие образования одноосновной диглицериноборной кислоты.

Смешанные растворители (спирт + вода или ацетон + вода) используют для алкалиметрического титрования сульфаниламидов.

Несмешивающиеся растворители (вода + хлороформ) используют при количественном определении солей органических оснований (например, алкалоиды, новокаин). Хлороформ извлекает из водной фазы органическое основание, выделяющееся при титровании щелочью.

N − . HCI + NaOH → N − ↓ + NaCI + Н 2 О

Оксимный метод

Основан на нейтрализации эквивалентного количества хлористоводородной кислоты, выделившейся в результате взаимодействия гидроксиламина гидрохлорида с кетопроизводными (например, камфорой):

С=O+NH 2 OH·HCl → C=N-OH↓ + HCl +H 2 O

HCl + NaOH → NaCl + H 2 O

Титрование в среде неводных растворителей (неводное титрование)

Обратное титрование

(сочетание с этерификацией)

Некоторые спирты и фенолы например, (глицерин, синэстрол) ацетилируют в неводной среде уксусным ангидридом. Затем избыток уксусного ангидрида, нагревая с водой, превращают в уксусную кислоту, которую титруют щелочью.

2R-OH + (CH 3 CO) 2 O → 2R- O - C -CH 3 + H 2 O

(CH 3 CO) 2 O изб. + H 2 O → 2CH 3 COOH

2CH 3 COOH +2NaOH→ 2CH 3 COONa+2 Н 2 О

Параллельно проводят контрольный опыт.

Органические основания и их соли (например : кофеин, фтивазид) проявляют слабые основные свойства, поэтому титрование выполняют, используя в качестве растворителя безводную уксусную кислоту или уксусный ангидрид.

Титрант – раствор хлорной кислоты в безводной уксусной кислоте.

Индикатор – кристаллический фиолетовый в безводной уксусной кислоте.

Слабое органическое основание при рас-

творении в безводной уксусной кислоте

становится более сильным основанием:

R 3 N + CH 3 COOH → R 3 N + − H + CH 3 COO -

При приготовлении титранта образуются перхлорат-ион и ион ацетония:

CH 3 COOH + HClO 4 → ClO 4 - + CH 3 COOH 2 +

При титровании:

CH 3 COO - + CH 3 COOH 2 + → 2 CH 3 COOH, а

R 3 N + − H + ClO 4 - → [ R 3 N + − H ] ClO 4 -

Галогениды четвертичных аммониевых оснований и соли галогеноводородных кислот нельзя точно оттитровать в неводной среде, так как галоген-ионы проявляют кислые свойства даже в среде безводной уксусной кислоты. Поэтому их титруют в присутствии (CH 3 COO) 2 Hg (можно взять смесь муравьиной кислоты с уксусным ангидридом 1:20), при этом галоген-ионы связываются в малодиссоциированные соединения. Примеры димедрол, дибазол, промедол, эфедрина гидрохлорид.

Органические вещества, проявляющие слабые кислые свойства (например: фенолы, барбитураты, сульфаниламиды) титруют, используя в качестве растворителя ДМФ.

Титрант – раствор NaOH в CH 3 OH или раствор метилата натрия.

Индикатор – тимоловый синий.

R−OH + H−C−N−CH 3 → R−O - + H−C−N−CH 3

R−O - + CH 3 ONa → R−ONa + CH 3 O –

CH 3 O - + H−C−N−CH 3 → CH 3 OH + H−C−N−CH 3

Недостатком неводного титрования является необходимость герметизированной титровальной установки. Работа ведется с весьма токсичными летучими растворителями.

Окислительно-восстановительное титрование

Методы основаны на использовании окислительных и восстановительных свойств анализируемых веществ и, соответственно, титрантов.

Перманганатометрия

Метод основан на использовании окислительных свойств титранта - перманганата калия в сильнокислой среде. При прямом титровании индикатором служит сам титрант, избыток которого придает раствору розовое окрашивание.

Этим методом титруют железо восстановленное, перекись водорода.

2 КМnО 4 + 5 Н 2 О 2 + 3 Н 2 SО 4 → 2 МnSО 4 + К 2 SО 4 + 8 Н 2 О + 5 О 2

При обратном титровании избыток титранта устанавливают йодометрически. Количественно определяют обратным титрованием натрия нитрит.

5 NaNO 2 + 2 KMnO 4 + 3 H 2 SO 4 → 5 NaNO 3 + 2 MnSO 4 + K 2 SO 4 + 3 H 2 O

2 KMnO 4 + 10 KI + 8 H 2 SO 4 → 2 MnSO 4 + 5 I 2 + 6 K 2 SO 4 + 8 H 2 O

Индикатор – крахмал.

Йодометрия

Метод основан на использовании окислительных свойств свободного йода и восстановительных свойствах йодид-ионов: I 2 + 2ē ↔ 2I -

Этим методом определяют лекарственные вещества способные окислиться или восстанавливается, а также способные образовывать с йодом продукты замещения. Йодометрически можно определять избыток титранта в обратном перманганатометрическом, йодхлорметрическом, йодатометрическом, броматометрическом методах.

Прямое титрование йодом применяют для определения натрия тиосульфата.

2 Na 2 S 2 O 3 + I 2 → Na 2 S 4 O 6 + 2 NaI

Индикатор – крахмал.

Обратное йодометрическое определение основано на окислении альдегидов йодом в щелочной среде: I 2 + 2 NaOH → NaOI + NaI + H 2 O

R-C-H + NaOI + NaOH → R-C-ONa +NaI+H 2­ O

Затем добавляют избыток серной кислоты, непрореагировавший гипойодид превращается в йод, который оттитровывают тиосульфатом натрия:

NaOI + NaI + Н 2 SО 4 → I 2 + Na 2 SO 4 + H 2 O

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Индикатором служит крахмал, образующий с йодом соединение, окрашенное в синий цвет.

В щелочной среде йодом окисляют фурациллин, окисление изониазида ведут в растворе гидрокарбоната натрия. В основе йодометрического определения метионина и анальгина лежит реакция окисления серы. Пенициллины окисляют йодом после кислотного гидролиза.

Для количественного определения используют также сочетание реакций замещения или осаждения с йодометрией. С помощью титрованного раствора йода получают йодопроизводные фенолов, первичных ароматических аминов, антипирина, а также осадки полийодидов алкалоидов состава ∙ HI ∙ I 4 . Полученные осадки отфильтровывают, а избыток йода в фильтрате титруют тиосульфатом натрия.

Восстановительные свойства калия йодида используют при титровании заместителя .

Лекарственное вещество, проявляющее свойство окислителя, выделяет эквивалентное количество свободного йода при взаимодействии с йодидом калия. Выделившийся свободный йод оттитровывают тиосульфатом натрия. Этим методом количественно определяют перекись водорода, калия перманганат, хлорную известь, хлорамин, пантоцид.

Н 2 О 2 + 2 КI + Н 2 SО 4 → I 2 + К 2 SО 4 + 2 Н 2 О

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Индикатор – крахмал.

Йодхлорметрия

Это метод аналогичный йодометрии. Но в качестве титранта используют раствор йодмонохлорида, который более устойчив. Йодхлорметрическим методом способом обратного титрования определяют фенолы и первичные ароматические амины. Анализируемое вещество осаждается в виде йодпроизводного, избыток титранта устанавливают йодометрически:

ICI + KI → I 2 + KCI

Йодатометрия

Этим методом количественно определяют, например, аскорбиновую кислоту. Лекарственное вещество окисляются титрованным раствором йодата калия. Избыток титранта устанавливают йодометрически, индикатор – крахмал.

КIO 3 + 5 КI + 6 HCI → 3 I 2 + 6 KCI + 3 H 2 O

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Броматометрия

В качестве титранта используют бромат калия, проявляющий в кислой среде окислительные свойства. Определение обычно ведут в присутствии бромида.

КBrO 3 + 5 КBr + 6 HCI → 3 Br 2 + 6 KCI + 3 H 2 O

Выделившийся свободный бром расходуется либо на окисление (гидразины и гидразиды), либо на бромирование (фенолы и первичные ароматические амины) лекарственного вещества. Индикаторами при прямом титровании служат красители – азосоединения: метиловый красный, метиловый оранжевый – которые окисляются и обесцвечиваются под действием избытка титранта в точке эквивалентности.

При обратной броматометрии конец титрования устанавливают йодометрически:

Br 2 + 2 KI → I 2 + 2 KBr

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Дихроматометрия

Метод основан на осаждении некоторых солей органических оснований титрованным раствором дихромата калия: 2 Cl - + K 2 Cr 2 O 7 → 2 Cr 2 O 7 + 2 KCl

Нерастворимые дихроматы оснований отфильтровывают, а избыток титранта определяют йодометрически: K 2 Cr 2 O 7 + 6 KI +7 H 2 SO 4 → Cr 2 (SO 4) 3 + 3 I 2 + 4 K 2 SO 4 + 7 H 2 O

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2 NaI

Определяют этим методом метиленовый синий и акрихин.

Цериметрия

Метод основан на использовании устойчивого титранта сульфата церия (IV), который в кислой среде восстанавливается до сульфата церия (III): Ce 4+ + ē → Ce 3+

Прямым титрованием определяют соединения железа (II):

2 FeSO 4 + 2 Ce(SO 4) 2 → Fe 2 (SO 4) 3 + Ce 2 (SO 4) 3

При этом используют индикаторы – дифениламин или о-фенантролин (фероин).

При обратном титровании избыток титранта определяют йодометрически:

2 Ce(SO 4) 2 + 2 KI → I 2 + Ce 2 (SO 4) 3 + K 2 SO 4

I 2 + 2 Na 2 S 2 O 3 → Na 2 S 4 O 6 + 2NaI

Комплексонометрия

Метод основан на образовании прочных, растворимых в воде комплексов катионов металлов с титрованным раствором трилона Б – динатриевой солью этилендиаминтетрауксусной кислоты. Взаимодействие происходит в стехиометрическом соотношении 1:1 независимо от заряда катиона:

CH 2 COONa CH 2 COONa

CH 2 − N CH 2 − N

CH 2 COOH CH 2 COO

CH 2 COOH + MgSO 4 → CH 2 COO Mg + Н 2 SO 4

CH 2 − N CH 2 − N

CH 2 COONa CH 2 COONa

CH 2 COONa CH 2 COO

CH 2 − N CH 2 − N

CH 2 COOH CH 2 COO

CH 2 COOH + Bi 2 (SO 4) 3 → CH 2 COO Bi + Н 2 SO 4 + Na 2 SO 4

CH 2 − N CH 2 − N

CH 2 COONa CH 2 COO - Э = М/2.

При комплексонометрическом титровании соблюдают определенный интервал значений pH, который достигается с помощью буферных растворов.

Применяемые индикаторы называются металлоиндикаторами: КХТС (кислотный хром темно-синий), КХЧС (кислотный хром черный специальный), пирокатехиновый фиолетовый, ксиленоловый оранжевый, кальконкарбоновая кислота, мурексид. Перед достижением точки эквивалентности свободные ионы металла, содержащиеся в титруемом растворе свяжутся с титрантом. Последние порции титранта разрушают комплекс иона металла с индикатором,при этом происходит образование комплекса металла с трилоном Б и высвобождение

свободных ионов индикатора, поэтому титруе­мый раствор приобретает окраску свободного индикатора.

При прямом титровании к анализируемому раствору солей кальция, магния, цинка, висмута добавляют необходимый объем буферного раствора для достижения нужного значения рН и указанное в частной статье количество металлоиндикатора. Затем титруют раствором трилона Б до тех пор, пока в эквивалентной точке не произойдет изменение окраски индикатора.

Обратное титрование применяют, если нет подходящего индикатора для прямого титрования, если реакция металла с трилоном Б идет медленно и если происходи гидролиз металла при образовании комплексоната.

При анализе солей ртути или свинца избыток трилона Б, не вступивший во взаимодействие с анализируемым катионом, оттитровывают, используя в качестве титрантов растворы солей цинка или магния. Титруют также в присутствии металлоиндикатора и при определенном значении рН среды.

Метод вытеснения (или титрование по заместителю) применяют когда нельзя подобрать соответствующий индикатор, например при анализе солей свинца. Сначала известную навеску соли магния оттитровывают трилоном Б в среде аммиачного буфера в присутствии металлоиндикатора. Затем, после изменения окраски титруемой жидкости, добавляют навеску анализируемой соли свинца. При этом ионы свинца, образуя более прочный комплекс с трилоном Б, вытесняет эквивалентное количество ионов магния. Далее проводят количественное определение содержания вытесненных ионов магния.

Нитритометрия

Метод основан на реакциях взаимодействия первичных и вторичных ароматических аминов с нитритом натрия в кислой среде, в присутствии катализатора бромида калия и при пониженной температуре.

Первичные ароматические амины (новокаин, сульфаниламиды) образуют с титрантом диазосоединения: Ar-NH 2 + NaNO 2 + HCl → Cl - + NaCl + 2H 2 O

Вторичные ароматические амины (дикаин) в тех же условиях образуют N-нитрозосединения: Ar-NH-R + NaNO 2 + HCl→ Ar- N – R + NaCl + H 2 O

Точку эквивалентности устанавливают с помощью внешних индикаторов (йодкрахмальная бумага), внутренних индикаторов (тропеолин 00, нейтральный красный) или потенциометрически.

3. Элементный анализ

Используют для количественного определения соединений, содержащих азот, галогены, серу, висмут и ртуть.

Метод Кьельдаля

Это фармакопейный метод определения азота в органических соединениях, содержащих аминный, амидный и гетероциклический азот. Он основан на сочетании минерализации органического вещества с последующим применением кислотно-основного титрования. Вначале осуществляют минерализацию образца, нагревая с концентрированной серной кислотой в колбе Кьельдаля. Затем полученный гидросульфат аммония обрабатывают щелочью и отгоняют выделившийся аммиак в приемник с борной кислотой. В результате образуется метаборат и тетраборат аммония, которые титруют 0,1 М HCl. Параллельно выполняют контрольный опыт для повышения точности анализа.

Для веществ, содержащих легко гидролизующуюся в щелочной среде амидную группу, используют косвенный метод Кьельдаля. Это упрощенный вариант в котором исключена стадия минерализации. Препарат разрушают щелочью в колбе Кьельдаля и отгоняют выделившийся аммиак (или диалкиламин) в приемник. Метод трудоемкий.

Метод сжигания в колбе с кислородом

Метод основан на разрушении органического вещества, содержащего галогены, серу, фосфор, сожжением в колбе, наполненной кислородом в поглощающей жидкости и последующем определении элементов, находящихся в растворе в виде ионов или молекул. Качественное и количественное определения выполняют различными химическими или физико-химическими методами. Преимущество метода в быстроте минерализации, в исключении потерь элемента в процессе минерализации, высокой чувствительности анализа.

Для анализа галогенсодержащих органических веществ применяют так же и другие методы минерализации (восстановительную, окислительную и др.).

Газометрический анализ

Определяют кислород и циклопропан. Метод применяется ограничено.

Физико-химические методы анализа

Эти методы отличаются экспрессностью, избирательностью, высокая чувствительностью, возможностью унификации и автоматизации, объективностью оценки качества препарата по фармакологически активной части молекулы. Физико-химические методы используют для испытаний подлинности, доброкачественности и количественного определения лекарственных веществ.

Оптические методы основаны на определении показателя преломления луча света в испытуемом растворе (рефрактометрия), измерении интерференции света (интерферомет-

рия), способности раствора вещества вращать плоскость поляризованного луча (поляриметрия). Методы отличаются минимальным расходом анализируемого вещества.

Абсорбционные методы основаны на свойствах веществ поглощать свет в различных областях спектра. Например, СПФ - в УФ-спектре, ФЭК - в видимой области спектра,

ИК-спектроскопия – в ИК-спектре.

К методам, основанным на испускании излучения , относятся фотометрия пламени (измеряют интенсивность излучения спектральных линий испытуемых элементов), флуориметрия (основана на способности веществ флуоресцировать в УФ-свете) и радиохимические методы (основаны на измерении β – или γ – излучения).

Методы, основанные на использовании магнитного поля, представляют собой ЯМР-и ПМР-спектроскопию, а также масс-спектрометрию.

К электрохимическим методам относятся потенциометрия, основанная на измерении равновесных потенциалов, возникающих на границе между испытуемым раствором и погруженным в него электродом; полярография, основанная на измерении силы тока, возникающего на микроэлектроде при электровосстановлении или электроокислении анализируемого вещества в растворе; кулонометрия, основанная на измерении количества электричества, затраченного на электрохимическое восстановление или окисление определяемых ионов.

К методам разделения относят хроматографию, основанную на разделении веществ за счет распределения их между подвижной и неподвижной фазами; электрофорез, основанный на способности заряженных частиц к перемещению в электрическом поле; экстракцию из твердого вещества или из раствора экстрагентом, не смешивающимся с исходной фазой и легко отделяющимся от нее и от экстрагируемого вещества.

Термические методы анализа основаны на точной регистрации равновесного состояния между кристаллической и жидкой фазами анализируемого вещества.

Биологические методы анализа

Биологическую оценку качества лекарственных препаратов (антибиотиков, сердечных гликозидов, гормонов) проводят по силе фармакологического эффекта или по токсичности. Проводят биологические испытания на животных, отдельных изолированных органах, отдельных группах клеток, а также определенных штаммов микроорганизмов. Активность препаратов выражают в ЕД (единицы действия). К биологическим испытаниям относят определение пирогенности на кроликах, токсичности на мышах, определение содержания гистаминоподобных веществ на кошках.

ОпределениеКурсовая работа >> Медицина, здоровье

... Методы контроля исходного сырья. D. Методы анализа промежуточных продуктов. Е. Методы анализа готового лекарственного средства ... Нифантьев, О.Е. Аббревиатуры, термины и определения в сфере обращения лекарственных средств : Словарь-справочник / О.Е. Нифантьев, ...

Одна из наиболее важных задач фармацевтической химии - это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание.

ГФ предлагает следующие методы контроля качества ЛС.

Физические и физико-химические методы. К ним относятся: определение температур плавления и затвердевания, а также температурных пределов перегонки; определение плотности, показателей преломления (рефрактометрия), оптического вращения (поляриметрия); спектрофотометрия - ультрафиолетовая, инфракрасная; фотоколориметрия, эмиссионная и атомно-абсорбционная спектрометрия, флуориметрия, спектроскопия ядерного магнитного резонанса, масс-спектрометрия; хроматография - адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная; электрофорез (фронтальный, зональный, капиллярный); электрометрические методы (потенциометрическое определение pH, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод рама- новской спектроскопии - оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тио- ацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой.

Важной физической константой, характеризующей подлинность и степень чистоты ЛС, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для лекарственных веществ, содержащих некоторое количество допустимых примесей, ГФ регламентирует интервал температуры плавления в пределах 2 °С. Но в соответствии с законом Рауля (АТ = iK3C, где АТ - понижение температуры кристаллизации; К3 - криоскопическая постоянная; С - концентрация) при і = 1 (неэлектролит) значение А Г не может быть одинаковым для всех веществ. Это связано не только с содержанием примесей, но и с природой самого ЛВ, т. е. с величиной криоскопической постоянной К3, отражающей молярное понижение температуры плавления ЛВ. Таким образом, при одинаковом АТ = = 2 °С для камфоры (К3 = 40) и фенола (К3 = 7,3) массовые доли примесей не равны и составляют соответственно 0,76 и 2,5 %.

Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

В некоторых частных статьях ГФ X рекомендуется определять температуру затвердевания или температуру кипения (по ГФ XI - «температурные пределы перегонки») для ряда жидких ЛС. Температура кипения должна укладываться в интервал, приведенный в частной статье.

Более широкий интервал свидетельствует о присутствии примесей.

Во многих частных статьях ГФ X приведены допустимые значения плотности, реже вязкости, подтверждающие подлинность и доброкачественность ЛС.

Практически все частные статьи ГФ X нормируют такой показатель качества ЛС, как растворимость в различных растворителях. Присутствие примесей в ЛВ может повлиять на его растворимость, снижая или повышая ее в зависимости от природы примеси.

Критериями чистоты являются также цвет ЛВ и/или прозрачность жидких лекарственных форм.

Определенным критерием чистоты ЛС могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них плоскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению.

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплек- сонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

Для проведения физико-химического анализа полупродуктов, субстанций лекарственных средств и готовых лекарственных форм при проверке их качества на соответствие требованиям ФС контрольно-аналитическая лаборатория должна быть оснащена следующим минимальным набором оборудования и приборов:

ИК-спектрофотометр (для определения подлинности);

спектрофотометр для спектрометрии в видимой и УФ-области (определение подлинности, количественное определение, однородность дозирования, растворимость);

оборудование для тонкослойной хроматографии (ТСХ) (определение подлинности, родственных примесей);

хроматограф для высокоэффективной жидкостной хроматографии (ВЭЖХ) (определение подлинности, количественное определение, определение родственных примесей, однородности дозирования, растворимости);

газожидкостной хроматограф (ГЖХ) (содержание примесей, определение однородности дозирования);

поляриметр (определение подлинности, количественное определение);

потенциометр (измерение pH, количественное определение);

атомно-абсорбционный спектрофотометр (элементный анализ тяжелых металлов и неметаллов);

титратор К. Фишера (определение содержания воды);

дериватограф (определение потери массы при высушивании).

УДК 615.015:615.07:53

АНАЛИЗ ЛЕКАРСТВЕННЫХ СРЕДСТВ ПРИ ФАРМАКОКИНЕТИЧЕСКИХ

ИССЛЕДОВАНИЯХ

Дмитрий Владимирович Рейхарт1, Виктор Владимирович Чистяков2

Кафедра организации и управления в сфере обращения лекарственных средств (зав. - чл.-корр. РАМН, проф. Р.У. Хабриев) Московской государственной медицинской академии им. И.М. Сеченова,

2 Центр по химии лекарственных средств - ВНИХФИ (ген. директор - К.В. Шилин), г. Москва

Проведен обзор чувствительных и специфичных аналитических методов, применяемых при изучении фармакокинетики лекарственных препаратов. Показаны достоинства и ограничения применения имму-ноферментного анализа, метода высокоэффективной жидкостной хроматографии с флуоресцентной и масс-спектрометрической детекцией. Применение того или иного метода при оценке фармакокинетики лекарственных препаратов в каждом конкретном случае определяется структурой исследуемого соединения и оснащенностью лаборатории.

Ключевые слова: жидкостная хроматография, флюоресцентная и масс-спектрометрическая детекция, иммуноферментный анализ, фармакокинетика.

Изучение фармакокинетики основано главным образом на оценке концентрации в организме пациента лекарственного вещества (ЛВ) в определенные моменты времени после приема препарата. Объектом исследования служат кровь (цельная, сыворотка, плазма), моча, слюна, кал, желчь, амниотическая жидкость и др. Наиболее доступны и чаще исследуются образцы крови и мочи.

Измерение концентрации ЛВ можно разделить на два этапа: 1 - выделение конкретного лекарственного вещества из биологического объекта, концентрирование исследуемого соединения, отделение его от основных эндогенных компонентов; 2 - разделение смеси соединений, идентификация ЛВ и количественный анализ.

Изучение концентрации препарата в крови дает информацию о продолжительности циркуляции лекарства в организме, биодоступности препарата, влиянии концентрации на фармакологический эффект, терапевтической и летальной дозах, динамике образования активных или токсичных метаболитов.

Изучение концентрации препарата в моче позволяет оценить скорость элиминации ЛВ и функцию почек. Концентрация метаболитов в моче - косвенный показатель активности метаболизирующих ферментов.

Исследование биологического материала включает измерение массы (объема) пробы, высвобождение препарата (метаболитов) из 532

клеток пробы, отделение целых клеток (например, при анализе крови) или частей клеток (при анализе гомогенатов тканей), добавление внутреннего стандарта, отделение белков, очистку пробы (центрифугирование, фильтрация), процедуры экстракции, реэкстракции, концентрирования и превращения исследуемых веществ в удобные для анализа производные, основные процедуры обработки проб крови и мочи соответственно (рис. 1).

«Идеальный» аналитический метод измерения концентрации ЛВ должен обладать высокой чувствительностью, специфичностью и воспроизводимостью, возможностью работы с малыми объемами, простотой подготовки материала, дешевизной и легкостью обслуживания оборудования, надежностью и возможностью автоматизации, простотой работы персонала и универсальностью (возможность анализа различных классов ЛВ).

Для получения достоверных данных необходимо делать поправку на стабильность действующего вещества и/или продукта (продуктов), а также степень его биотрансформации в анализируемых биологических средах .

Валидация метода должна проводиться c учетом его предполагаемого применения, при калибровке следует учитывать диапазон концентраций исследуемого образца. Категорически не рекомендуется применять два или более метода анализа проб в одном и том же материале со сходным диапазоном калибровочных значений.

Существует большое число методов определения концентрации ЛВ в биологических жидкостях: xроматографические, микробиологические, спектрофотометрические, полярографические, иммунологические (радиоим-мунные, иммуноэнзимные), радиоизотопные и другие методы.

Критическими параметрами метода являются чувствительность, скорость, точность, возможность работы с малым объемом биоматериала и стоимость.

В табл. 1 сравниваются аналитические методы анализа ЛВ .

Наиболее широко (до 95% исследований) на практике применяется метод высокоэффектив-

Рис. 1. Основные процедуры обработки проб крови и мочи.

ной жидкостной хроматографии (ВЭЖХ) с различными видами детекции.

Преимуществами ВЭЖХ по сравнению, например, с методом газожидкостной хроматографии (ГЖХ) являются отсутствие ограничений по термостабильности анализируемых препаратов, возможность работы с водными растворами и летучими соединениями, использования вариантов «нормальнофазной» и «обращеннофазной» хроматографии. Многие из видов детекции являются неразрушающи-

иммуноферментный, ВЭЖХ с флуоресцентной детекцией, ВЭЖХ с масс-спектрометрической детекцией, которые в настоящее время активно применяются в фармакокинетических исследованиях.

Иммуноферментный метод

Метод иммуноферментного анализа (ИФА) предложен в начале 70-х годов прошлого столетия. Принцип ИФА заключается во взаимодействии специфических белковых ан-

Сравнительная характеристика методов анализа лекарственных средств

Методы Абсолютная чувствительность, г Чувст- витель- ность, баллы Слож- ность, баллы Избира- тельность, баллы Универ- сальность Сум- марная оценка, баллы

Жидкостная хроматография:

УФ-детектор 10-7 3 -3 4 4 8

флуоресцентный детектор 10-8 - 10-9 4 -3 5 2 8

масс-спектрометрический детектор 10-11 - 10-12 5 -5 5 4 9

Иммунологические 10-10 - 10-11 5 -1 4 1 9

Газовая хроматография:

электронозахватный детектор 10-10 5 -4 4 2 7

пламенно-ионизационный детектор 10-8 - 10-9 4 -3 2 4 7

ми; методы детекции, используемые в ВЭЖХ, обладают более высокой специфичностью.

Рассмотрим особенности высокочувствительных методов, позволяющих анализировать нанограммовые количества ЛВ (табл.1):

тител с анализируемым веществом, выступающим в роли антигена. Чем выше концентрация вещества-антигена, тем больше образуется комплексов антиген-антитело. Для количественного анализа комплексообразования при-

меняют два подхода - с предварительным отделением комплекса (гетерогенные методы) или без его отделения (гомогенные методы). В том и другом случае пробу с неизвестной концентрацией анализируемого вещества добавляют к сыворотке, в которой антитело связано в комплекс с меченным аналогом исследуемого вещества, и вещество из анализируемой пробы вытесняется из комплекса. Количество вытесненного меченного аналога пропорционально концентрации вещества в пробе. Определив, сколько меченного аналога оказалось вытеснено из комплекса (или, напротив, осталось связанным), можно рассчитать искомый уровень вещества в пробе. Предварительно проводится калибровка с использованием стандартных растворов (со стандартными концентрациями тестируемого вещества).

Выпускаются наборы реактивов - так называемые диагностикумы (антисыворотка, соединенный с препаратом фермент, субстрат, кофактор, стандартные растворы для калибровки), рассчитанные на 50-200 анализов. Для анализа обычно достаточно 0,05-0,2 мл сыворотки крови больного.

Иммуноэнзимные методы обладают высокой чувствительностью и специфичностью. Диагностикумы сравнительно дешевые и имеют более продолжительные сроки годности, чем наборы для радиоиммунных методов. При использовании ИФА устраняется необходимость отделения комплекса антиген-антитело - достаточно сложной процедуры, с относительно высоким риском ошибки. Им-муноэнзимный метод может выполняться в любой больничной или поликлинической лаборатории; разработаны приборы, обеспечивающие полную автоматизацию анализа.

Простота анализа, высокая чувствительность, точность, воспроизводимость,

умеренная цена аппаратуры и реактивов - все это создает перспективу для широкого внедрения иммунологических методов в медицинскую практику.

Высокоэффективная жидкостная хромотография с флуоресцентной детекцией

При ВЭЖХ детектор генерирует электрический сигнал, сила которого пропорциональна концентрации анализируемого вещества, растворенного в подвижной фазе. В первых жидкостных хроматографах (ионообменных) прошедшая через колонку подвижная фаза с компонентами пробы собиралась в небольшие сосуды, а затем при помощи титрометрии, колориметрии, полярографии и т.д. определялось содержание компонента в этой порции. Иными словами, процессы разделения пробы

и определения ее количественного состава были разделены во времени и пространстве. В современном жидкостном хроматографе эти процессы обеспечиваются одним прибором.

Для детекции компонентов пробы может быть использовано любое физико-химическое свойство подвижной фазы (поглощение или излучение света, электропроводность, показатель преломления и т.д.), которое изменяется при наличии в ней молекул разделяемых соединений. Из существующих 50 физико-химических методов детекции в настоящее время активно используется 5-6.

Чувствительность-важнейшая характеристика детектора. Если определять чувствительность через двойную амплитуду шума нулевой линии, а шум выражать в физических единицах, то чувствительность фотометрического детектора будет выражаться в единицах оптической плотности, рефрактометрического - в единицах показателя преломления, вольтам-перометрического - в амперах, кондуктомет-рического - в сименсах. В фармацевтическом анализе чувствительность выражают в минимальном количестве определяемого вещества. Степень чувствительности различных типов детекторов приведена в табл. 1.

Несмотря на то что в настоящее время 80% хроматографов оснащено в базовой комплектации спектрофотометрическими детекторами, всё большее распространение получает флуоресцентная детекция, особенно при определении концентрации соединений, способных «светиться» под действием возбуждающего излучения. Интенсивность люминесценции пропорциональна интенсивности возбуждающего света. Исследование спектров испускания (флуоресценции и фосфоресценции) - более чувствительный и специфичный метод, чем исследование спектров поглощения.

Спектр флуоресценции вещества во многих случаях представляет собой зеркальное отражение полосы поглощения с наименьшей энергией и обычно располагается рядом с этой полосой с её длинноволновой стороны. Данный метод наиболее удобно применять при исследовании лекарственных препаратов, обладающих собственной флуоресценцией (хлорохин, доксорубицин, доксазо-зин, атенолол, индометацин, пропранолол, тетрациклины, хинидин и др.). Некоторые ЛВ можно сравнительно легко превратить во флуоресцирующие соединения (процесс дериватизации), например гидрокортизон (обработка серной кислотой), меперидин (конденсация с формальдегидом), 6-меркап-топурин и метотрексат (окисление перманганатом калия). Другие препараты с активными функциональными группами можно конденсировать с флуоресцирующими реа-

гентами - флуорескамином (хлордеазепок-сид, новокаинамид, сульфаниламиды и др.), 7-нитробензо-2,1,3-оксадиазолом (пропокси-фен и др.) и т.д. Вместе с тем необходимо отметить, что при высокой чувствительности и селективности флуоресцентные методы детектирования ограничены кругом ЛВ, имеющих естественную флуоресценцию, а процесс дериватизации при количественном анализе требует больших затрат.

Высокоэффективная жидкостная хроматография с масс-спектрометрической детекцией

Высокочувствительным вариантом современного детектора для ВЭЖХ, применяемого для фармакокинетических исследований, является масс-спектрометрометр. Масс-спектрометрический детектор позволяет значительно сократить время анализа, в частности за счет исключения подготовительной стадии (экстракции). Данный метод дает возможность одновременно идентифицировать несколько веществ, и это исключает ошибки, связанные с наличием неразделяемых компонентов.

Масс-спектрометрия - один из наиболее перспективных методов физико-химического анализа лекарственных средств. Традиционно органическая масс-спектрометрия используется для решения двух основных проблем: идентификации веществ и изучения фрагментации ионизированных молекул в газовой фазе. Соединение масс-спектрометра с жидкостным хроматографом значительно расширило возможности классического метода. С появлением новых методов ионизации, таких как «электроспрей» (ESI - англ. electrospray ionization) - ионизация в электрическом поле при атмосферном давлении) и «МАЛДИ» - ионизация лазерной десорбцией, список молекул, которые могут быть изучены данным методом, значительно расширился.

В настоящее время комбинация ВЭЖХ и масс-спектрометрического детектора с «электроспреем» нашла широкое распространение в исследовании фармакокинетики и биоэквивалентности лекарственных препаратов . Первоначально метод ESI был разработан под руководством Л.Н. Галль , а в 2002 г. Д. Фен-ну и К. Танаке была присуждена Нобелевская премия за разработку методов индентифика-ции и структурного анализа биологических макромолекул и, в частности, методов масс-спектрометрического анализа биологических макромолекул. В механизме образования ионизированных частиц выделяют три стадии. Первая - образование заряженных капель на срезе капилляра. Посредством приложенного напряжения происходит перераспределение заряда в растворе, положительные ионы скап-

ливаются у выхода. При сильном приложенном поле (3-5 кВ) образуется струя из вершины конуса, которая далее разлетается на мелкие капли. Вторая стадия - постепенное сокращение размеров заряженных капель за счет испарения растворителя и последующего распада капель вплоть до получения истинных ионов. Заряженные капли движутся сквозь атмосферу по направлению к противоположному электроду. Третья стадия - повторяющиеся циклы разделения и уменьшения объема капель до полного испарения растворителя и образования ионов в газовой фазе.

Современные ЖХ-МС системы (LC/MS - англ. liquid chromatography/mass-spectrometry) позволяют регистрировать полный ионный ток (TIC - англ. total ion current), проводить контроль заданных ионов (SIM - англ. selected ion monitoring) и контроль заданных реакций селективное мониторирование реакции (SRM - англ. selected reaction monitoring).

При анализе полного ионного тока (TIC) получают данные обо всех соединениях, последовательно выходящих из хроматографической колонки. Масс-хроматограммы напоминают хроматограммы с УФ-детекцией, при этом площадь под пиком соответствует количеству вещества. При определении заданных ионов (SIM) оператор может ограничить диапазон детекции необходимых соединений выделив, например, минорные вещества. Наибольшей чувствительностью и специфичностью обладает SRM-метод, когда регистрация ионного тока идет по одному выбранному иону, характерному для исследуемого соединения (при ESI-ионизации и регистрации положительных ионов это, как правило, - молекулярный ион МН+).

В недавно опубликованных работах обсуждается возможность количественного анализа органических веществ в биологических объектах без хроматографического разделения с помощью мультионной детекции и внутреннего контроля в виде меченного дейтерием аналога . В частности, для молекул липидной природы определен диапазон концентраций (от пико- до наномолей), при котором авторы наблюдали линейную зависимость интенсивности ионного тока от концентрации вещества. Увеличение концентрации соединений в растворе приводило к ион-молекулярным взаимодействиям в процессе ионизации и нарушению линейности.

Описан метод количественного определения простагландинов и полиненасыщен-ных жирных кислот с использованием электроспрей-ионизации - масс-спектрометрии без хроматографического разделения с применением внутреннего стандарта и регистрации отрицательных ионов . В работе

Ю.О. Каратассо и И. В. Логуновой чувствительность масс-спектрометрии при исследовании потенциального антиаритмического средства составила 3 нг/0,5 мл плазмы крови.

При выборе аналитического метода необходимо иметь в виду, что использование ИФА лимитируется наличием обязательных реактивов, флуоресцентной детекции, необходимостью собственной флуоресценции у исследуемого соединения. Хотя при масс-спектрометрической детекции вышеуказанные ограничения несущественны, однако стоимость оборудования на сегодняшний день остается достаточно высокой, и данный вид анализа требует специальных навыков.

ЛИТЕРАТУРА

1. Александров М.Л., Галль Л.Н., Краснов Н.В. и др. Экстракция ионов из растворов при атмосферном давлении - новый метод масс-спектрометрического анализа // Докл. Акад. наук СССР. - 1984. - Т.277. - № 2. -

2. Каратассо Ю.О, Логунова И. В., Сергеева М. Г. и др. Количественный анализ лекарственных препаратов в плазме крови с использованием электроспрей ионизации - масс-спектрометрии без хроматографического разделения // Хим. фарм. журн. - 2007. - № 4. - С. 161-166.

3. Каратассо Ю.О, Алёшин С.Е., Попова Н.В. и др. Количественный анализ простагландинов и полине-насыщенных жирных кислот методом масс-спектро-метрии с ионизацией электрораспылением // Масс-спектрометрия. -2007. - Т.4. - В.3. - С. 173-178.

4. Холодов Л.Е, Яковлев В.П. Клиническая фармакокинетика. - М.:Медицина, 1985. - 463 с.

5. Covey T.R., Lee E.D., Henion J.D. High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples // Anal. Chem. - 1986. - Vol. 58 (12). - P. 2453-2460.

6. Conference report on analytical methods validation: bioavailability, bioequivalence and pharmacokinetic studies // J. Pharmac. sci. - 1992. - Vol.81. - P. 309-312.

7. De Long C.J., Baker P.R.S., SamuelM. et al. Molecular species composition of rat liver phospholipids by ESI-MS/ MS: The effect of chromatography//J. Lipid Res. - 2001. - Vol. 42. - P. 1959-1968.

8. Electrospray Ionization Mass Spectrometry. Ed. R.B.Cole // Wiley. - New York, 1997.

9. Han X., Yang K., Yang J. et al. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids // Am. Soc. Mass Spectrom. - 2006. - Vol. 17(2). - P. 264-274.

10. Koivusalo M., Haimi P., Heikinheimo L. et al. Quantitative determination of phospholipids compositions by ESI-MS: Effects of acyl chain length, unsaturation, and lipid concentration on instrument response // J. Lipid Res. - 2001. - Vol. 42. - P. 663-672.

11. Lee M.S., Kerns E.H. LC/MS applications in drug discovery//Mass Spectrom. Rev. - 1999. - Vol. 18 (3-4). - P. 187-279.

Поступила 28.05.10.

ANALYSIS OF DRUGS IN PHARMACOKINETIC STUDIES

D.V. Reikhart, V.V. Chistyakov

Conducted was a review of sensitive and specific analytical methods for studying the pharmacokinetics of drugs. Shown were the advantages and limitations of immune-enzyme analysis, of high performance liquid chromatography with fluorescence and mass spectrometric detection. The usage of a method in the evaluation of the pharmacokinetics of drugs in each case should be determined by the structure of the compound and the laboratory equipment.

Key words: liquid chromatography, fluorescence and mass spectrometric detection, immune-enzyme analysis, pharmacokinetics.