Арены химические свойства таблица. Арены: химические свойства и способы получения

Бензол получают из каменноугольной смолы, образующейся при коксовании угля, нефти, синтетическими методами.

1. Получение из алифатических углеводородов . При пропускании алканов с неразветвленной цепью, имеющих не менее шести атомов углерода в молекуле, над нагретой платиной или оксидом хрома происходит дегидроциклизация — образование арена с выделением водорода : способ Б.А. Казанского и А.Ф. Платэ

2. Дегидрирование циклоалканов (Н.Д. Зелинский )Реакция происходит при пропускании паров циклогексана и его гомологов над нагретой платиной при 3000 0 .

3. Получение бензола тримеризацией ацетилена над активированным углём при 600 0 (Н.Д. Зелинский )

3НC?СН -- 600?C ?

4. Сплавление солей ароматических кислот со щелочью или натронной известью:

5. Химические свойства аренов.

Бензольное ядро обладает высокой прочностью. Для аренов наиболее характерны реакции, протекающие по механизму электрофильного замещения, обозначаемого символом S E (от англ. substitution electrophilic).

Химические свойства бензола.

1. Реакции замещения:

Галогенирование . Бензол не взаимодействует с хлором или бромом в обычных условиях. Реакция может протекать только в присутствии катализаторов — безводных АlСl 3 , FeСl 3 , АlВr 3 . В результате реакции образуются галогенозамещенные арены:

Роль катализатора заключается в поляризации нейтральной молекулы галогена с образованием из нее электрофильной частицы:

Нитрование . Бензол очень медленно реагирует с концентрированной азотной кислотой даже при сильном нагревании. Однако при действии так называемой нитрующей смеси (смесь концентрированных азотной и серной кислот) реакция нитрования проходит достаточно легко:

Сулъфирование . Реакция легко проходит под действием “дымящей” серной кислоты (олеума):

2. Алкилирование по Фриделю—Крафтсу . В результате реакции происходит введение в бензольное ядро алкильной группы с получением гомологов бензола. Реакция протекает при действии на бензол галогеналканов RСl в присутствии катализаторов — галогенидов алюминия. Роль катализатора сводится к поляризации молекулы RСl с образованием электрофильной частицы:

В зависимости от строения радикала в галогеналкане можно получить разные гомологи бензола:

Алкилирование алкенами. Эти реакции широко используются в промышленности для получения этилбензола и изопропилбензола (кумола). Алкилирование проводят в присутствии катализатора АlСl 3 . Механизм реакции сходен с механизмом предыдущей реакции:

Все рассмотренные выше реакции протекают по механизму электрофильного замещения S E . Реакции присоединения к аренам приводят к разрушению ароматической системы и требуют больших затрат энергии, поэтому протекают только в жестких условиях.


3. Реакции присоединения, идущие с разрывом связей :

Гидрирование . Реакция присоединения водорода к аренам идет при нагревании и высоком давлении в присутствии металлических катализаторов (Ni, Pt, Pd). Бензол превращается в циклогексан , а гомологи бензола — в производные циклогексана:

Радикальное галогенирование . Взаимодействие паров бензола с хлором протекает по радикальному механизму только под воздействием жесткого ультрафиолетового излучения. При этом бензол присоединяет три молекулы хлора и образует твердый продукт — гексахлорциклогексан (гексахлоран) С 6 Н 6 Сl 6:

4. Окисление кислородом воздуха. По устойчивости к действию окислителей бензол напоминает алканы. Только при сильном нагревании (400 °С) паров бензола с кислородом воздуха в присутствии катализатора V 2 О 5 получается смесь малеиновой кислоты и ее ангидрида:

5. Бензол горит. (Просмотр опыта) Пламя бензола коптящее из-за высокого содержания углерода в молекуле.

2 C 6 H 6 + 15 O 2 → 12CO 2 + 6H 2 O

6. Применение аренов.

Бензол и его гомологи применяются как химическое сырье для производства лекарств, пластмасс, красителей, ацетона, фенола, формальдегидных пластмасс. ядохимикатов и многих других органических веществ. Широко используются как растворители. Бензол в качестве добавки улучшает качество моторного топлива. Этилен используют для получения этилового спирта, полиэтилена. Он ускоряет созревание плодов (помидоров, цитрусовых) при введении незначительных количеств его в воздух теплиц. Пропилен используется для синтеза глицерина, спирта, для добывания полипропилена, который идет на изготовление веревок, канатов, упаковочного материала. Исходя из 1-бутену, добывают синтетический каучук.

Ацетилен используют для автогенной сварки металлов. Полиэтилен используются как упаковочный материал, для изготовления сумок, игрушек, домашней посуды (бутылок, ведер, мисок и т.п.). Ароматические углеводороды широко применяют в производстве красителей, пластических масс, химико-фармацевтических препаратов, взрывчатых веществ, синтетических волокон, моторного топлива и др. Основным источником получения А. у. служат продукты коксования каменного угля. Из 1 т кам.-уг. смолы можно в среднем выделит: 3,5 кг бензола, 1,5 кг толуола, 2 кг нафталина. Большое значение имеет производство А. у. из нефтяных углеводородов жирного ряда. Для некоторых А. у. имеют практическое значение чисто синтетические методы. Так, из бензола и этилена производят этилбензол, дегидрирование которого приводит к стиролу.

ЗАДАНИЯ ДЛЯ САМОКОНТРОЛЯ:

1. Какие соединения называются аренами?

2. Какие характерные физические свойства?

3. Задача. Из 7,8 г бензола получено 8,61 г нитробензола. Определите выход (в%) продукта реакции.

Основные источники получения – нефть и продукты сухой перегонки (коксования) каменного угля. Выделение ароматических углеводородов из каменноугольной смолы – наиболее старый и до 50-х годов основной способ их получения. При нагревании выше 1000 ºС без доступа воздуха уголь разлагается с образованием твердых (кокс), жидких (каменноугольная смола, аммиачная вода) и газообразных (коксовые газы) продуктов перегонки.

Кокс – в основном углерод; применяется в металлургии.

Газы коксования – H 2 , CH 4 , CO, CO 2 , N 2 , этиленовые углеводороды.

Каменноугольная смола – содержит большое количество органических соединений различной природы. Выход смолы около 3 %. На первом этапе ее перегоняют на 4 фракции (табл. 11).

Т а б л и ц а 11

Основные фракции каменноугольной смолы

Остаток от перегонки (60 %) называется пеком. Это твердая, размягчающаяся при нагревании масса темного цвета.

Из перечисленных фракций разнообразными приемами выделяются индивидуальные органические соединения.

В некоторых видах нефти содержание ароматических углеводородов достигает 60 %. Тем не менее основное их количество получается из нефти при химической переработке (ароматизации нефти) – пиролизе и каталитическом риформинге, в ходе которого протекают реакции дегидрирования (а) и дегидроциклизации (б):

(а)
;

циклогексан бензол

н-гексан бензол

Синтетический способ получения бензола – тримеризация ацетилена (см. разд. 5.2.5). Гомологи бензола получают алкилированием по методу Фриделя–Крафтса (разд. 6.2.1) или по методу Вюрца–Фиттига:

бромбензол бутилбромид бутилбензол

(Р. Фиттиг в 1864 г. распространил реакцию Ш. Вюрца на ароматические углеводороды для алкирования и ацилирования бензола).

Области использования аренов чрезвычайно разнообразны.

Бензол, толуол, ксилолы – широко применимые органические растворители и основа многотоннажных органических синтезов – красителей, взрывчатых веществ (ТНТ), пластмасс (полистирол, лавсан), лекарств, средств защиты растений и др.

Список литературы

1. Нечаев А.П., Еременко Т.В. Органическая химия: Учеб. для пищ. ин–тов. – М.: Высшая школа, 1985. – 463 с.

2. Нечаев А.П. Органическая химия: Учеб. для сред. спец. учеб. заведений по пищ. спец. – 2–е изд., перераб. и доп. – М.: Высшая школа, 1988. – 318 с.

3. Артеменко А.И. Органическая химия: Учеб. для строит. спец. вузов. – 3-е изд., перераб. и доп. – М.: Высшая школа, 1994. – 500 с.

4. Грандберг И.И. Органическая химия: Учеб. пособие для с/х вузов. – 2-е изд., перераб. и доп. – М.: Высшая школа, 1980. – 463 с.

5. Каррер П. Курс органической химии. 2-е изд. – Л.: Госхимиздат, 1962. – 1216 с.

6. Робертс Дж., Касерио М. Основы органической химии. – М.: Мир, 1968. – Ч. 1. – 592 с.; 1968. – Ч. 2. – 550 с.

7. Кан Р., Дермер О. Введение в химическую номенклатуру. – М.: Химия, 1983. – 224 с.

8. Волков В.А. Вонский Е.В., Кузнецова Г.И. Выдающиеся химики мира: Биографический справочник. – М.: Высшая школа, 1991.

9. Краткая химическая энциклопедия. – М.: Сов. энциклопедия, 1961. – Т. 1. – 1262 с.; 1963. – Т. 2. – 1086 с.; 1964. – Т. 3. – 1112 с.; 1965. – Т. 4. – 1182 с.; 1967. – Т. 5. – 1184 с.

10. Чмутов К.В. Хромотография. – М.: Химия, 1978. – 128 с.

11. Азимов А. Мир углерода. – М.: Химия, 1978. – 208 с.

12. Щульпин Г.Б. Эта увлекательная химия. – М.: Химия, 1984. – 184 с.

13. Эммануэль Н.М., Заиков Г.Е. Химия и пища. – М.: Наука, 1986. – 173 с.

ПОСОБИЕ-РЕПЕТИТОР ПО ХИМИИ.

Арены. Бензол .

Статья посвящена ароматическим углеводородам (аренам) и самому простому их представителю – бензолу. Материал содержит
теоретическую часть в объеме, необходимом для подготовки к сдаче ЕГЭ, тест и задачи. Приведены также ответы и,

к некоторым задачам, – решения.

И.В.ТРИГУБЧАК

Ароматические углеводороды (арены). Бензол

П л а н 1. Определение, общая форму ла гомологического ряда, строение молекулы (на примере бензола). 2. Физические свойства бензола. 3. Химические свойства бензола: а) реакции замещения (галоге нирование, нитрование, суль фирование, алкилирование); б) реакции присоединения (ги дрирование, хлорирование); в) реакции окисления (горе ние). 4. Получение бензола (в про мышленности – переработкой нефти и угля, дегидрированием циклогексана, ароматизацией гексана, тримеризацией ацетиле на; в лаборатории – сплавлением солей бензойной кислоты со ще лочами).

Арены – это углеводороды, молекулы которых содержат одно или несколько бензольных колец. Под бензольным кольцом под разумевается кольцевая система атомов углерода с делокализован ными π-электронами. В 1931 г. Э.Хюккель сформулировал пра вило, гласящее, что соединение должно проявлять ароматические свойства, если в его молекуле со держится плоское кольцо с (4n + 2) обобщенными электронами, где n может проявлять значения целых чисел от 1 и далее (правило Хюк келя). Согласно этому правилу системы, содержащие 6, 10, 14 и т.д. обобщенных электронов, явля ются ароматическими. Различают три группы аренов по количеству и взаимному расположению бен зольных колец.

Моноциклические арены.

Изобразите структурные фор мулы бензола, толуола, о-ксилола, кумола. Назовите эти вещества по систематической номенклатуре.

Полициклические арены с изолированными ядрами.

Изобразите структурные фор мулы дифенила, дифенилметана, стильбена.


Полициклические арены с конденсированными ядрами.

Изобразите структурные фор мулы нафталина, антрацена.


Общая формула моноциклических аренов ряда бензола – С6Н2n–6, где n ≥ 6. Простейший представитель – бензол (С6Н6). Предложенная в 1865 г. немецким химиком
Ф.А.Кекуле циклическая формула бензола с сопряженными связями (циклогексатриен-1,3,5) не объясняла многие свойства бензола.
Для бензола характерны реакции замещения, а не реакции присоединения, как для непредельных углеводородов. Реакции присоединения возможны, но протекают
они труднее, чем у алкенов.
Бензол не вступает в реакции, являющиеся качественными на непредельные углеводороды (с бромной водой и раствором перманганата калия).
Проведенные позже исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину – 0,140 нм (среднее значение между длиной простой связи С–С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 °. Молекула бензола представляет собой правильный плоский шестиугольник.
Современная теория строения молекулы бензола базируется на представлении о гибридизации орбиталей атома углерода. Согласно этой теории, атомы углерода в бензоле находятся в состоянии sp2-гибридизации. Каждый атом углерода образует три σ-связи (две с атомами углерода и одну – с атомом водорода). Все σ-связи находятся в одной плоскости. У каждого атома углерода остается еще по одному р-электрону, не участвующему в гибридизации. Негибридизированные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, в результате чего образуется единая сопряженная π-система. Единое π-электронное облако расположено над и под бензольным кольцом, причем р-электроны не связаны с каким-либо атомом углерода и могут перемещаться относительно них в том или ином направлении. Полная симметричность бензольного ядра, обусловленная сопряжением, придает ему особую устойчивость.
Таким образом, наряду с формулой Кекуле используется формула бензола, где обобщенное электронное облако изображают замкнутой линией внутри кольца.
Изобразите формулу Кекуле и формулу, показывающую сопряженную π-систему.


Радикал, образованный от бензола, имеет тривиальное название фенил.
Изобразите его структурную формулу.

Физические свойства

При обычных условиях бензол представляет собой бесцветную жидкость с температурой плавления 5,5 °С, температурой кипения 80 °С; имеет характерный запах; легче воды и с ней не смешивается; хороший органический растворитель; токсичен.

Химические свойства

Химические свойства бензола и его гомологов определяются спецификой ароматической связи. Наиболее характерными для аренов являются реакции замещения (для бензола они протекают тяжелее, чем для его гомологов).

Галогенирование.
Напишите реакцию хлорирования бензола.


Нитрование.
Напишите реакцию взаимодействия бензола с азотной кислотой.


Сульфирование.
Напишите реакцию взаимодействия бензола с серной кислотой.


Алкилирование (реакция Фри деля–Крафтса).

Напишите реак ции получения этилбензола при взаимодействии бензола с хлор этаном и с этиленом.


Cистема из 6 π-электронов является более устойчивой, чем 2π-электронная, поэтому реакции присоединения для аренов менее характерны, чем для алкенов; они возможны, но при более жестких условиях.

Гидрирование.

Напишите реакцию гидрирования бензола до циклогексана.


Присоединение хлора.

Напишите реакцию хлорирования бензола до гексахлорана.

Реакции окисления для бензола возможна только в виде горения, т.к. к действию окислителей бензольное кольцо устойчиво.
Напишите реакцию горения бензола. Объясните, почему ароматические углеводороды горят коптящим пламенем.


Получение аренов

АРЕНЫ (ароматические углеводороды)

Арены или ароматические углеводороды – это соединения, молекулы которых содержат устойчивые циклические группы атомов (бензольные ядра) с замкнутой системой сопряженных связей.

Почему "Ароматические"? Т.к. некоторые из ряда веществ имеют приятный запах. Однако в настоящее время в понятие "ароматичность" вкладывается совершенно иной смысл.

Ароматичность молекулы означает ее повышенную устойчивость, обусловленную делокализацией π-электронов в циклической системе.

Критерии ароматичности аренов:

  1. Атомы углерода в sp 2 -гибридизованном состоянии образуют цикл.
  2. Атомы углерода располагаются в одной плоскости (цикл имеет плоское строение).
  3. Замкнутая система сопряженных связей содержит

    4n+2 π-электронов (n – целое число).


Этим критериям полностью соответствует молекула бензола С 6 Н 6 .

Понятие “бензольное кольцо ” требует расшифровки. Для этого необходимо рассмотреть строение молекулы бензола.

В се связи между атомами углерода в бензоле одинаковые (нет как таковых двойных и одинарных) и имеют длину 0,139нм. Эта величина является промежуточной между длиной одинарной связи в алканах (0,154нм) и длиной двойной связи в алкенах (0,133 им).

Равноценность связей принято изображать кружком внутри цикла

Круговое сопряжение дает выигрыш в энергии 150 кДж/моль. Эта величина составляет энергию сопряжения — количество энергии, которое нужно затратить, чтобы нарушить ароматическую систему бензола.

Общая фоормула: C n H 2n-6 (n ≥ 6)

Гомологический ряд:

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R):

орто - (о -) заместители у соседних атомов углерода кольца, т.е. 1,2-;
мета - (м -) заместители через один атом углерода (1,3-);
пара - (п -) заместители на противоположных сторонах кольца (1,4-).

арил

C 6 H 5 - (фенил ) и C 6 H Ароматические одновалентные радикалы имеют общее название "арил ". Из них наиболее распространены в номенклатуре органических соединений два:

C 6 H 5 - (фенил ) и C 6 H 5 CH 2 - (бензил ). 5 CH 2 - (бензил ).

Изомерия:

структурная:

1) положения заместителей для ди -, три - и тетра -замещенных бензолов (например, о -, м - и п -ксилолы);

2) углеродного скелета в боковой цепи, содержащей не менее 3-х атомов углерода:

3) изомерия заместителей R, начиная с R = С 2 Н 5 .

Химические свойства:

Для аренов более характерны реакции, идущие с сохранением ароматической системы , а именно, реакции замещения атомов водорода, связанных с циклом.

2. Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированныхазотной и серной кислот):

3. Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование ) происходит под действием алкилгалогенидов или алкенов в присутствии катализаторов AlCl 3 , AlBr 3 , FeCl 3 .



Замещение в алкилбензолах:

Гомологи бензола (алкилбензолы) более активно вступают в реакции замещения по сравнению с бензолом.

Например, при нитровании толуола С 6 Н 5 CH 3 может происходить замещение не одного, а трех атомов водорода с образованием 2,4,6-тринитротолуола:

и облегчает замещение именно в этих положениях.

С другой стороны, под влиянием бензольного кольца метильная группа СH 3 в толуоле становится более активной в реакциях окисления и радикального замещения по сравнению с метаном СH 4 .

Толуол, в отличие от метана, окисляется в мягких условиях (обесцвечивает подкисленный раствор KMnO 4 при нагревании):

Легче, чем в алканах, протекают реакции радикального замещения в боковой цепи алкилбензолов:

Это объясняется тем, что на лимитирующей стадии легко (при невысокой энергии активации) образуются устойчивые промежуточные радикалы. Например, в случае толуола образуется радикал бензил Ċ H 2 -C 6 H 5 . Он более стабилен, чем алкильные свободные радикалы (Ċ Н 3 , Ċ H 2 R), т.к. его неспаренный электрон делокализован за счет взаимодействия с π-электронной системой бензольного кольца:



Правила ориентации

  1. Заместители, имеющиеся в бензольном ядре, направляют вновь вступающую группу в определенные положения, т.е. оказывают ориентирующее действие.
  2. По своему направляющему действию все заместители делятся на две группы: ориентанты первого рода и ориентанты второго рода .

    Ориентанты 1-го рода (орто-пара -ориентанты) направляют последующее замещение преимущественно в орто - и пара -положения.

    К ним относятся электронодонорные группы (электронные эффекты групп указаны в скобках):

R (+I ); - OH (+M,-I ); - OR (+M,-I ); - NH 2 (+M,-I ); - NR 2 (+M,-I ) +M-эффект в этих группах сильнее, чем -I-эффект.

Ориентанты 1-го рода повышают электронную плотность в бензольном кольце, особенно на углеродных атомах в орто - и пара -положениях, что благоприятствует взаимодействию с электрофильными реагентами именно этих атомов.

Ориентанты 1-го рода, повышая электронную плотность в бензольном кольце, увеличивают его активность в реакциях электрофильного замещения по сравнению с незамещенным бензолом.

Особое место среди ориентантов 1-го рода занимают галогены, проявляющие электроноакцепторные свойства:

-F (+M<–I ), -Cl (+M<–I ), -Br (+M<–I ).

Являясь орто-пара -ориентантами, они замедляют электрофильное замещение. Причина - сильный –I -эффект электроотрицательных атомов галогенов, понижащий электронную плотность в кольце.

Ориентанты 2-го рода (мета -ориентанты) направляют последующее замещение преимущественно в мета -положение.
К ним относятся электроноакцепторные группы:

-NO 2 (–M, –I ); -COOH (–M, –I ); -CH=O (–M, –I ); -SO 3 H (–I ); -NH 3 + (–I ); -CCl 3 (–I ).

Ориентанты 2-го рода уменьшают электронную плотность в бензольном кольце, особенно в орто - и пара -положениях. Поэтому электрофил атакует атомы углерода не в этих положениях, а в мета -положении, где электронная плотность несколько выше.
Пример:

Все ориентанты 2-го рода, уменьшая в целом электронную плотность в бензольном кольце, снижают его активность в реакциях электрофильного замещения.

Таким образом, легкость электрофильного замещения для соединений (приведенных в качестве примеров) уменьшается в ряду:

толуол C 6 H 5 CH В отличие от бензола его гомологи окисляются довольно легко.