Складне похідне визначення. Складна функція

І теорему про похідну складної функції, формулювання якої таке:

Нехай 1) функція $u=\varphi (x)$ має у певній точці $x_0$ похідну $u_(x)"=\varphi"(x_0)$; 2) функція $y=f(u)$ має у відповідній точці $u_0=\varphi (x_0)$ похідну $y_(u)"=f"(u)$. Тоді складна функція $y=f\left(\varphi (x) \right)$ у згаданій точці також матиме похідну, рівну добутку похідних функцій $f(u)$ і $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

або, у більш короткому записі: $y_(x)"=y_(u)"\cdot u_(x)"$.

У прикладах цього розділу всі функції мають вигляд $y=f(x)$ (тобто розглядаємо лише функції однієї змінної $x$). Відповідно, у всіх прикладах похідна $y"$ береться за змінною $x$. Щоб підкреслити те, що похідна береться за змінною $x$, часто замість $y"$ пишуть $y"_x$.

У прикладах №1, №2 та №3 викладено докладний процес знаходження похідної складних функцій. Приклад №4 призначений більш повного розуміння таблиці похідних і з ним має сенс ознайомитися.

Бажано після вивчення матеріалу у прикладах №1-3 перейти до самостійного рішення прикладів №5, №6 та №7. Приклади №5, №6 та №7 містять коротке рішення, щоб читач міг перевірити правильність свого результату.

Приклад №1

Знайти похідну функції $y=e^(\cos x)$.

Нам потрібно знайти похідну складної функції $y"$. Оскільки $y=e^(\cos x)$, то $y"=\left(e^(\cos x)\right)"$. Щоб знайти похідну $ \left(e^(\cos x)\right)"$ використовуємо формулу №6 з таблиці похідних . Щоб використати формулу №6, потрібно врахувати, що в нашому випадку $u=\cos x$. Подальше рішення полягає у банальній підстановці у формулу №6 виразу $\cos x$ замість $u$:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Тепер потрібно знайти значення виразу $(\cos x)"$. Знову звертаємося до таблиці похідних, вибираючи з неї формулу №10. Підставляючи $u=x$ у формулу №10, маємо: $(\cos x)"=-\ sin x\cdot x"$. Тепер продовжимо рівність (1.1), доповнивши його знайденим результатом:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Оскільки $x"=1$, то продовжимо рівність (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Отже, з рівності (1.3) маємо: $y"=-\sin x\cdot e^(\cos x)$. Природно, що пояснення та проміжні рівності зазвичай пропускають, записуючи перебування похідної в один рядок, - як у рівності ( 1.3) Отже, похідна складної функції знайдена, залишилося лише записати відповідь.

Відповідь: $y"=-\sin x\cdot e^(\cos x)$.

Приклад №2

Знайти похідну функції $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Нам необхідно обчислити похідну $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Спочатку відзначимо, що константу (тобто число 9) можна винести за знак похідної:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Тепер звернемося до виразу $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Щоб вибрати потрібну формулу з таблиці похідних було легше, я представлю вираз, що розглядається в такому вигляді: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Тепер видно, що потрібно використовувати формулу №2, тобто. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. У цю формулу підставимо $u=\arctg(4\cdot \ln x)$ і $\alpha=12$:

Доповнюючи рівність (2.1) отриманим результатом, маємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

У цій ситуації часто допускається помилка, коли вирішувач на першому кроці вибирає формулу $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ замість формули $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Справа в тому, що першою має бути похідна зовнішньої функції. Щоб зрозуміти, яка саме функція буде зовнішньою для вираження $\arctg^(12)(4\cdot 5^x)$, уявіть, що ви вважаєте значення виразу $\arctg^(12)(4\cdot 5^x)$ за якогось значення $x$. Спочатку ви порахуєте значення $5^x$, потім помножите результат на 4, отримавши $4\cdot 5^x$. Тепер від цього результату беремо арктангенс, отримавши $ arcctg (4 cdot 5 ^ x) $. Потім зводимо отримане число в дванадцятий ступінь, отримуючи $ arctg (12) (4 cdot 5 x) $. Остання дія, - тобто. зведення в ступінь 12 - і буде зовнішньою функцією. І саме з неї слід починати перебування похідної, що було зроблено рівності (2.2).

Тепер потрібно знайти $(\arctg(4\cdot \ln x))"$. Використовуємо формулу №19 таблиці похідних, підставивши в неї $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Трохи спростимо отриманий вираз, враховуючи $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Рівність (2.2) тепер стане такою:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Залишилося знайти $(4\cdot \ln x)"$. Винесемо константу (тобто 4) за знак похідної: $(4\cdot \ln x)"=4\cdot (\ln x)"$. того, щоб знайти $(\ln x)"$ використовуємо формулу №8, підставивши в неї $u=x$: $(\ln x)"=\frac(1)(x)\cdot x"$. Оскільки $x"=1$, то $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x )$.Підставивши отриманий результат у формулу (2.3), отримаємо:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)). $

Нагадаю, що похідна складної функції найчастіше знаходиться в один рядок - як записано в останній рівності. Тому при оформленні типових розрахунків або контрольних робіт зовсім не обов'язково розписувати рішення так само детально.

Відповідь: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Приклад №3

Знайти $y"$ функції $y=\sqrt(\sin^3(5\cdot9^x))$.

Для початку трохи змінимо функцію $y$, висловивши радикал (корінь) у вигляді ступеня: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9^x) \right)^(\frac(3)(7))$. Тепер приступимо до знаходження похідної. Оскільки $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Використовуємо формулу №2 з таблиці похідних , підставивши до неї $u=\sin(5\cdot 9^x)$ і $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Продовжимо рівність (3.1), використовуючи отриманий результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Тепер потрібно знайти $(\sin(5\cdot 9^x))"$. Використовуємо для цього формулу №9 з похідних таблиці, підставивши в неї $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Доповнивши рівність (3.2) отриманим результатом, маємо:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

Залишилося знайти $(5\cdot 9^x)"$. Для початку винесемо константу (число $5$) за знак похідної, тобто $(5\cdot 9^x)"=5\cdot (9^x) "$. Для знаходження похідної $(9^x)"$ застосуємо формулу №5 таблиці похідних, підставивши до неї $a=9$ і $u=x$: $(9^x)"=9^x\cdot \ ln9\cdot x"$. Оскільки $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Тепер можна продовжити рівність (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можна знову від ступенів повернутися до радикалів (тобто коріння), записавши $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ у вигляді $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\) cdot 9^x)))$. Тоді похідна буде записана у такій формі:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).$$

Відповідь: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\) cdot 9^x)))$.

Приклад №4

Показати, що формули №3 і №4 таблиці похідних є окремий випадок формули №2 цієї таблиці.

У формулі №2 таблиці похідних записано похідну функцію $u^\alpha$. Підставляючи $\alpha=-1$ у формулу №2, отримаємо:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Оскільки $u^(-1)=\frac(1)(u)$ і $u^(-2)=\frac(1)(u^2)$, то рівність (4.1) можна переписати так: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. Це і є формула №3 таблиці похідних.

Знову звернемося до формули №2 таблиці похідних. Підставимо до неї $\alpha=\frac(1)(2)$:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Оскільки $u^(\frac(1)(2))=\sqrt(u)$ і $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1)(2)))=\frac(1)(\sqrt(u))$, то рівність (4.2) можна переписати в такому вигляді:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Отримана рівність $(sqrt(u))"=\frac(1)(2sqrt(u))cdot u"$ і є формула №4 таблиці похідних. Як бачите, формули №3 та №4 таблиці похідних виходять із формули №2 підстановкою відповідного значення $ alfa $.

Запам'ятати дуже просто.

Ну і не будемо далеко ходити, одразу ж розглянемо зворотну функцію. Яка функція є зворотною для показової функції? Логарифм:

У нашому випадку основою є число:

Такий логарифм (тобто логарифм із основою) називається «натуральним», і для нього використовуємо особливе позначення: замість пишемо.

Чому дорівнює? Звичайно ж, .

Похідна від натурального логарифму теж дуже проста:

Приклади:

  1. Знайди похідну функцію.
  2. Чому дорівнює похідна функції?

Відповіді: Експонента та натуральний логарифм – функції унікально прості з погляду похідної. Показові та логарифмічні функції з будь-якою іншою основою будуть мати іншу похідну, яку ми з тобою розберемо пізніше, після того, як ми пройдемо правила диференціювання.

Правила диференціювання

Правила чого? Знову новий термін, знову?!

Диференціювання- Це процес знаходження похідної.

Тільки і всього. А як ще назвати цей процес одним словом? Не производнование ж... Диференціалом математики називають те саме збільшення функції при. Походить цей термін від латинського differentia - різниця. Ось.

При виведенні всіх цих правил використовуватимемо дві функції, наприклад, в. Нам знадобляться також формули їх прирощень:

Усього є 5 правил.

Константа виноситься за знак похідної.

Якщо – якесь постійне число (константа), тоді.

Очевидно, це правило працює і для різниці: .

Доведемо. Нехай, чи простіше.

приклади.

Знайдіть похідні функції:

  1. у точці;
  2. у точці;
  3. у точці;
  4. у точці.

Рішення:

  1. (похідна однакова у всіх точках, оскільки це лінійна функція, пам'ятаєш?);

Похідна робота

Тут все аналогічно: введемо нову функцію і знайдемо її збільшення:

Похідна:

Приклади:

  1. Знайдіть похідні функцій та;
  2. Знайдіть похідну функцію в точці.

Рішення:

Похідна показової функції

Тепер твоїх знань достатньо, щоб навчитися знаходити похідну будь-якої показової функції, а не лише експоненти (не забув ще, що це таке?).

Отже, де – це якесь число.

Ми вже знаємо похідну функцію, тому давай спробуємо привести нашу функцію до нової основи:

І тому скористаємося простим правилом: . Тоді:

Ну ось, вийшло. Тепер спробуй знайти похідну, і не забудь, що ця функція – складна.

Вийшло?

Ось, перевір себе:

Формула вийшла дуже схожа на похідну експоненти: як було, так і залишилося, з'явився лише множник, який є просто числом, але не змінною.

Приклади:
Знайди похідні функції:

Відповіді:

Це просто число, яке неможливо порахувати без калькулятора, тобто ніяк не записати до більш простому вигляді. Тому у відповіді його у такому вигляді і залишаємо.

    Зауважимо, що тут приватне двох функцій, тому застосуємо відповідне правило диференціювання:

    У цьому прикладі добуток двох функцій:

Похідна логарифмічна функція

Тут аналогічно: ти вже знаєш похідну від натурального логарифму:

Тому, щоб знайти довільну від логарифму з іншою основою, наприклад:

Потрібно привести цей логарифм до основи. А як змінити основу логарифму? Сподіваюся, ти пам'ятаєш цю формулу:

Тільки тепер замість писатимемо:

У знаменнику вийшла просто константа (постійне число без змінної). Похідна виходить дуже просто:

Похідні показової та логарифмічної функцій майже не зустрічаються в ЄДІ, але не буде зайвим знати їх.

Похідна складна функція.

Що таке "складна функція"? Ні, це не логарифм і не арктангенс. Дані функції може бути складними для розуміння (хоча, якщо логарифм тобі здається складним, прочитай тему «Логарифми» і все пройде), але з точки зору математики слово «складна» не означає «важка».

Уяви собі маленький конвеєр: сидять дві людини і роблять якісь дії з якимись предметами. Наприклад, перший загортає шоколадку в обгортку, а другий обв'язує її стрічкою. Виходить такий складовий об'єкт: шоколадка, обгорнена та обв'язана стрічкою. Щоб з'їсти шоколадку, тобі потрібно зробити зворотні дії у зворотному порядку.

Давай створимо подібний математичний конвеєр: спочатку знаходитимемо косинус числа, а потім отримане число зводитимемо в квадрат. Отже, нам дають число (шоколадка), я знаходжу його косинус (обгортка), а ти потім зводиш те, що в мене вийшло, у квадрат (обв'язуєш стрічкою). Що вийшло? функція. Це і є приклад складної функції: коли для знаходження її значення ми робимо першу дію безпосередньо зі змінною, а потім ще другу дію з тим, що вийшло в результаті першого.

Іншими словами, складна функція – це функція, аргументом якої є інша функція: .

Для прикладу, .

Ми цілком можемо робити ті ж дії і в зворотному порядку: спочатку ти зводиш у квадрат, а потім шукаю косинус отриманого числа: . Нескладно здогадатися, що результат майже завжди буде різним. Важлива особливість складних функцій: зміна порядку дій функція змінюється.

Другий приклад: (те саме). .

Дію, яку робимо останнім, називатимемо "зовнішньої" функцією, а дія, що чиниться першим - відповідно «внутрішньою» функцією(це неформальні назви, я їх вживаю лише для того, щоб пояснити матеріал простою мовою).

Спробуй визначити сам, яка функція є зовнішньою, а яка внутрішньою:

Відповіді:Поділ внутрішньої та зовнішньої функцій дуже схожий заміну змінних: наприклад, у функції

  1. Першим виконуватимемо яку дію? Спершу порахуємо синус, а потім зведемо в куб. Отже, внутрішня функція, а зовнішня.
    А вихідна функція є їх композицією: .
  2. Внутрішня: ; зовнішня: .
    Перевірка: .
  3. Внутрішня: ; зовнішня: .
    Перевірка: .
  4. Внутрішня: ; зовнішня: .
    Перевірка: .
  5. Внутрішня: ; зовнішня: .
    Перевірка: .

виконуємо заміну змінних та отримуємо функцію.

Ну що ж, тепер витягуватимемо нашу шоколадку - шукати похідну. Порядок дій завжди зворотний: спочатку шукаємо похідну зовнішньої функції, потім множимо результат на похідну внутрішньої функції. Стосовно вихідного прикладу це так:

Інший приклад:

Отже, сформулюємо, нарешті, офіційне правило:

Алгоритм знаходження похідної складної функції:

Начебто все просто, так?

Перевіримо на прикладах:

Рішення:

1) Внутрішня: ;

Зовнішня: ;

2) Внутрішня: ;

(Тільки не здумай тепер скоротити на! З-під косинуса нічого не виноситься, пам'ятаєш?)

3) Внутрішня: ;

Зовнішня: ;

Відразу видно, що тут трирівнева складна функція: адже - це вже сама по собі складна функція, а з неї витягуємо корінь, тобто виконуємо третю дію (шоколадку в обгортці і з стрічкою кладемо в портфель). Але лякатися немає причин: все одно «розпаковувати» цю функцію будемо в тому ж порядку, що і зазвичай: з кінця.

Тобто спершу продиференціюємо корінь, потім косинус, і лише потім вираз у дужках. А потім все це перемножимо.

У разі зручно пронумерувати дії. Тобто уявімо, що нам відомий. У якому порядку робитимемо дії, щоб обчислити значення цього виразу? Розберемо з прикладу:

Чим пізніше відбувається дія, тим більше «зовнішньої» буде відповідна функція. Послідовність дій - як і раніше:

Тут вкладеність взагалі 4-рівнева. Давайте визначимо порядок дій.

1. Підкорене вираз. .

2. Корінь. .

3. Синус. .

4. Квадрат. .

5. Збираємо все до купи:

ВИРОБНИЧА. КОРОТКО ПРО ГОЛОВНЕ

Похідна функції- Відношення збільшення функції до збільшення аргументу при нескінченно малому збільшення аргументу:

Базові похідні:

Правила диференціювання:

Константа виноситься за знак похідної:

Похідна сума:

Похідна робота:

Похідна приватна:

Похідна складної функції:

Алгоритм знаходження похідної від складної функції:

  1. Визначаємо "внутрішню" функцію, знаходимо її похідну.
  2. Визначаємо "зовнішню" функцію, знаходимо її похідну.
  3. Помножуємо результати першого та другого пунктів.

Якщо слідувати визначенню, то похідна функції у точці — це межа відношення збільшення функції Δ yдо збільшення аргументу Δ x:

Начебто все зрозуміло. Але спробуйте порахувати за цією формулою, скажімо, похідну функції f(x) = x 2 + (2x+ 3) · e x· sin x. Якщо все робити за визначенням, то через кілька сторінок обчислень ви просто заснете. Тому існують простіші та ефективніші способи.

Спочатку зазначимо, що з усього різноманіття функцій можна назвати звані елементарні функції. Це відносно прості вирази, похідні яких давно обчислені та занесені до таблиці. Такі функції досить просто запам'ятати — разом із їх похідними.

Похідні елементарних функцій

Елементарні функції – це все, що наведено нижче. Похідні цих функцій треба знати напам'ять. Тим більше, що завчити їх зовсім нескладно — на те вони й елементарні.

Отже, похідні елементарних функцій:

Назва Функція Похідна
Константа f(x) = C, CR 0 (так-так, нуль!)
Ступінь із раціональним показником f(x) = x n n · x n − 1
Сінус f(x) = sin x cos x
Косінус f(x) = cos x − sin x(мінус синус)
Тангенс f(x) = tg x 1/cos 2 x
Котангенс f(x) = ctg x − 1/sin 2 x
Натуральний логарифм f(x) = ln x 1/x
Довільний логарифм f(x) = log a x 1/(x· ln a)
Показова функція f(x) = e x e x(нічого не змінилось)

Якщо елементарну функцію помножити на довільну постійну, то похідна нової функції також легко вважається:

(C · f)’ = C · f ’.

Загалом константи можна виносити за знак похідної. Наприклад:

(2x 3)' = 2 · ( x 3)' = 2 · 3 x 2 = 6x 2 .

Очевидно, елементарні функції можна складати одна з одною, множити, ділити і багато іншого. Так з'являться нові функції, не особливо елементарні, але теж диференційовані за певними правилами. Ці правила розглянуті нижче.

Похідна суми та різниці

Нехай дані функції f(x) та g(x), похідні яких нам відомі. Наприклад, можна взяти елементарні функції, розглянуті вище. Тоді можна знайти похідну суми та різниці цих функцій:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

Отже, похідна суми (різниці) двох функцій дорівнює сумі (різниці) похідних. Доданків може бути більше. Наприклад, ( f + g + h)’ = f ’ + g ’ + h ’.

Строго кажучи, в алгебрі немає поняття «віднімання». Є поняття «негативний елемент». Тому різниця fgможна переписати як суму f+ (−1) · gі тоді залишиться лише одна формула — похідна суми.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Функція f(x) - це сума двох елементарних функцій, тому:

f ’(x) = (x 2 + sin x)’ = (x 2)' + (sin x)’ = 2x+ cos x;

Аналогічно міркуємо для функції g(x). Тільки там уже три доданки (з погляду алгебри):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Відповідь:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Похідна робота

Математика - наука логічна, тому багато хто вважає, що якщо похідна суми дорівнює сумі похідних, то похідна твори strike"> дорівнює твору похідних. А ось фіг вам! Похідна твори вважається зовсім за іншою формулою. А саме:

(f · g) ’ = f ’ · g + f · g

Формула проста, але її часто забувають. І не лише школярі, а й студенти. Результат – неправильно вирішені завдання.

Завдання. Знайти похідні функції: f(x) = x 3 · cos x; g(x) = (x 2 + 7x− 7) · e x .

Функція f(x) є твір двох елементарних функцій, тому все просто:

f ’(x) = (x 3 · cos x)’ = (x 3)' · cos x + x 3 · (cos x)’ = 3x 2 · cos x + x 3 · (− sin x) = x 2 · (3cos xx· sin x)

У функції g(x) перший множник трохи складніше, але загальна схема від цього не змінюється. Очевидно, перший множник функції g(x) є багаточлен, і його похідна - це похідна суми. Маємо:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)' · e x + (x 2 + 7x− 7) · ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Відповідь:
f ’(x) = x 2 · (3cos xx· sin x);
g ’(x) = x(x+ 9) · e x .

Зверніть увагу, що на останньому етапі похідна розкладається на множники. Формально цього робити не потрібно, проте більшість похідних обчислюються не власними силами, а щоб дослідити функцію. А значить, далі похідна прирівнюватиметься до нуля, з'ясовуватимуться її знаки і так далі. Для такої справи краще мати вираз, розкладений на множники.

Якщо є дві функції f(x) та g(x), причому g(x) ≠ 0 на цікавій для нас безлічі, можна визначити нову функцію h(x) = f(x)/g(x). Для такої функції також можна знайти похідну:

Неслабо, так? Звідки взявся мінус? Чому g 2? А ось так! Це одна із найскладніших формул — без пляшки не розберешся. Тому краще вивчати її на конкретні приклади.

Завдання. Знайти похідні функції:

У чисельнику та знаменнику кожного дробу стоять елементарні функції, тому все, що нам потрібно – це формула похідної частки:


За традицією, розкладемо чисельник на множники — це значно спростить відповідь:

Складна функція - це не обов'язково формула завдовжки півкілометра. Наприклад, достатньо взяти функцію f(x) = sin xта замінити змінну x, скажімо, на x 2 + ln x. Вийде f(x) = sin ( x 2 + ln x) - це і є складна функція. Вона теж має похідну, проте знайти її за правилами, розглянутими вище, не вийде.

Як бути? У таких випадках допомагає заміна змінної та формула похідної складної функції:

f ’(x) = f ’(t) · t', якщо xзамінюється на t(x).

Як правило, з розумінням цієї формули справа ще сумніше, ніж з похідною приватного. Тому її теж краще пояснити на конкретних прикладах, докладним описомкожного кроку.

Завдання. Знайти похідні функції: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Зауважимо, що якщо у функції f(x) замість виразу 2 x+ 3 буде просто x, то вийде елементарна функція f(x) = e x. Тому робимо заміну: нехай 2 x + 3 = t, f(x) = f(t) = e t. Шукаємо похідну складної функції за формулою:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

А тепер – увага! Виконуємо зворотну заміну: t = 2x+ 3. Отримаємо:

f ’(x) = e t · t ’ = e 2x+ 3 · (2 x + 3)’ = e 2x+ 3 · 2 = 2 · e 2x + 3

Тепер розберемося із функцією g(x). Очевидно, треба замінити x 2 + ln x = t. Маємо:

g ’(x) = g ’(t) · t' = (sin t)’ · t' = cos t · t

Зворотна заміна: t = x 2 + ln x. Тоді:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

От і все! Як очевидно з останнього висловлювання, все завдання звелося до обчислення похідної суми.

Відповідь:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) · cos ( x 2 + ln x).

Дуже часто на своїх уроках замість терміну "похідна" я використовую слово "штрих". Наприклад, штрих від суми дорівнює сумі штрихів. Так зрозуміліше? Ну от і добре.

Таким чином, обчислення похідної зводиться до позбавлення цих самих штрихів за правилами, розглянутими вище. Як останній приклад повернемося до похідного ступеня з раціональним показником:

(x n)’ = n · x n − 1

Мало хто знає, що в ролі nцілком може виступати дрібне число. Наприклад, корінь - це x 0,5. А що, коли під корінням стоятиме щось наворочене? Знову вийде складна функція – такі конструкції люблять давати на контрольні роботита екзаменах.

Завдання. Знайти похідну функції:

Для початку перепишемо корінь у вигляді ступеня з раціональним показником:

f(x) = (x 2 + 8x − 7) 0,5 .

Тепер робимо заміну: нехай x 2 + 8x − 7 = t. Знаходимо похідну за формулою:

f ’(x) = f ’(t) · t ’ = (t 0,5)' · t' = 0,5 · t−0,5 · t ’.

Робимо зворотну заміну: t = x 2 + 8x− 7. Маємо:

f ’(x) = 0,5 · ( x 2 + 8x− 7) −0,5 · ( x 2 + 8x− 7)' = 0,5 · (2 x+ 8) · ( x 2 + 8x − 7) −0,5 .

Нарешті, повертаємось до коріння:

Якщо g(x) та f(u) – функції своїх аргументів, що диференціюються відповідно в точках xі u= g(x), то складна функція також диференційована у точці xі знаходиться за формулою

Типова помилка під час вирішення завдань похідні - машинальне перенесення правил диференціювання простих функцій на складні функції. Вчитимемося уникати цієї помилки.

приклад 2.Знайти похідну функції

Неправильне рішення:обчислювати натуральний логарифм кожного складника в дужках та шукати суму похідних:

Правильне рішення:знову визначаємо, де "яблуко", а де "фарш". Тут натуральний логарифм від вираження у дужках - це "яблуко", тобто функція за проміжним аргументом u, а вираз у дужках - "фарш", тобто проміжний аргумент uпо незалежній змінній x.

Тоді (застосовуючи формулу 14 з похідних таблиці)

У багатьох реальних завданнях вираз із логарифмом буває дещо складнішим, тому і є урок

приклад 3.Знайти похідну функції

Неправильне рішення:

Правильне рішення.Вкотре визначаємо, де "яблуко", а де "фарш". Тут косинус від виразу у дужках (формула 7 у таблиці похідних)- це "яблуко", воно готується в режимі 1, що впливає тільки на нього, а вираз у дужках (похідна ступеня - номер 3 у таблиці похідних) - це "фарш", він готується при режимі 2, що впливає лише на нього. І як завжди поєднуємо дві похідні знаком твору. Результат:

Похідна складної логарифмічної функції - часте завдання на контрольних роботах, тому рекомендуємо відвідати урок "Виробна логарифмічна функція".

Перші приклади були складні функції, у яких проміжний аргумент з незалежної змінної був простою функцією. Але в практичних завданнях нерідко потрібно знайти похідну складної функції, де проміжний аргумент або сам є складною функцією або містить таку функцію. Що робити у таких випадках? Знаходити похідні таких функцій за таблицями та правилами диференціювання. Коли знайдено похідна проміжного аргументу, вона просто підставляється у потрібне місце формули. Нижче – два приклади, як це робиться.

Крім того, корисно знати таке. Якщо складна функція може бути представлена ​​у вигляді ланцюжка з трьох функцій

то її похідну слід шукати як добуток похідних кожної з таких функций:

Для вирішення багатьох ваших домашніх завдань може знадобитися відкрити у нових вікнах посібники Дії зі ступенями та коріннямі Дії з дробами .

приклад 4.Знайти похідну функції

Застосовуємо правило диференціювання складної функції, не забуваючи, що в отриманому творі похідних проміжний аргумент щодо незалежної змінної xне змінюється:

Готуємо другий співмножник твору та застосовуємо правило диференціювання суми:

Другий доданок - корінь, тому

Таким чином отримали, що проміжний аргумент, що є сумою, як один із доданків містить складну функцію: зведення в ступінь - складна функція, а те, що зводиться в ступінь - проміжний аргумент по незалежній змінній x.

Тому знову застосуємо правило диференціювання складної функції:

Ступінь першого співмножника перетворимо на корінь, а диференціюючи другий співмножник, не забуваємо, що похідна константи дорівнює нулю:

Тепер можемо знайти похідну проміжного аргументу, необхідного для обчислення похідної складної функції, що вимагається в умові завдання. y:

Приклад 5.Знайти похідну функції

Спочатку скористаємося правилом диференціювання суми:

Набули суму похідних двох складних функцій. Знаходимо першу з них:

Тут зведення синуса в ступінь - складна функція, а сам синус - проміжний аргумент щодо незалежної змінної x. Тому скористаємося правилом диференціювання складної функції, принагідно виносячи множник за дужки :

Тепер знаходимо другий доданок з утворюють похідну функції y:

Тут зведення косинуса в ступінь – складна функція f, а сам косинус - проміжний аргумент щодо незалежної змінної x. Знову скористаємося правилом диференціювання складної функції:

Результат - необхідна похідна:

Таблиця похідних деяких складних функцій

Для складних функцій виходячи з правила диференціювання складної функції формула похідної простий функції приймає інший вид.

1. Похідна складної статечної функції, де u x
2. Похідне коріння від виразу
3. Похідна показової функції
4. Окремий випадок показової функції
5. Похідна логарифмічна функція з довільною позитивною основою а
6. Похідна складної логарифмічної функції, де u- Диференційована функція аргументу x
7. Похідна синуса
8. Похідна косинуса
9. Похідна тангенса
10. Похідна котангенсу
11. Похідна арксинусу
12. Похідна арккосинусу
13. Похідна арктангенса
14. Похідна арккотангенса

Після попередньої артпідготовки будуть менш страшні приклади з 3-4-5 вкладеннями функцій. Можливо, наступні два приклади здадуться деяким складними, але якщо їх зрозуміти (хтось і мучиться), то майже все інше в диференціальному обчисленні здаватиметься дитячим жартом.

Приклад 2

Знайти похідну функції

Як зазначалося, при знаходженні похідної складної функції, передусім, необхідно правильноРОЗІБРАТИСЯ у вкладеннях. У тих випадках, коли є сумніви, нагадую корисний прийом: беремо піддослідне значення «ікс», наприклад, і пробуємо (подумки або на чернетці) підставити це значення в «страшний вираз».

1) Спочатку нам потрібно обчислити вираз, отже, сума - найглибше вкладення.

2) Потім необхідно обчислити логарифм:

4) Потім косинус звести до куба:

5) На п'ятому кроці різниця:

6) І, нарешті, сама зовнішня функція – це квадратний корінь:

Формула диференціювання складної функції застосовуються у зворотному порядку, від самої зовнішньої функції, до внутрішньої. Вирішуємо:

Начебто без помилок:

1) Беремо похідну від квадратного кореня.

2) Беремо похідну від різниці, використовуючи правило

3) Похідна трійки дорівнює нулю. У другому доданку беремо похідну від ступеня (куба).

4) Беремо похідну від косинуса.

6) І, нарешті, беремо похідну від найглибшого вкладення.

Може здатися дуже важко, але це ще не найбільш звірячий приклад. Візьміть, наприклад, збірку Кузнєцова і ви оціните всю красу і простоту розібраної похідної. Я помітив, що схожу штуку люблять давати на іспиті, щоб перевірити, чи розуміє студент, як знаходити похідну складної функції, чи не розуміє.

Наступний приклад для самостійного рішення.

Приклад 3

Знайти похідну функції

Підказка: Спочатку застосовуємо правила лінійності та правило диференціювання твору

Повне рішення та відповідь наприкінці уроку.

Настав час перейти до чогось більш компактного та симпатичного.
Не рідкісна ситуація, як у прикладі дано твір не двох, а трьох функцій. Як знайти похідну від твору трьох множників?

Приклад 4

Знайти похідну функції

Спочатку дивимося, а чи не можна твір трьох функцій перетворити на твір двох функцій? Наприклад, якби у нас у творі було два багаточлени, то можна було б розкрити дужки. Але в прикладі всі функції різні: ступінь, експонента і логарифм.

У таких випадках необхідно послідовнозастосувати правило диференціювання твору два рази

Фокус у тому, що з «у» ми позначимо твір двох функцій: , а й за «ве» - логарифм: . Чому можна так зробити? А хіба - це не твір двох множників і правило не працює? Нічого складного немає:


Тепер залишилося вдруге застосувати правило до дужки:

Можна ще поплутатися і винести щось за дужки, але в даному випадку відповідь краще залишити саме в такому вигляді - легше перевірятиме.

Розглянутий приклад можна вирішити другим способом:

Обидва способи вирішення абсолютно рівноцінні.

Приклад 5

Знайти похідну функції

Це приклад самостійного рішення, у зразку він вирішений першим способом.

Розглянемо аналогічні приклади із дробами.

Приклад 6

Знайти похідну функції

Тут можна йти кількома шляхами:

Або так:

Але рішення запишеться компактніше, якщо в першу чергу використовувати правило диференціювання приватного , Прийнявши за весь чисельник:

У принципі приклад вирішено, і якщо його залишити в такому вигляді, то це не буде помилкою. Але за наявності часу завжди бажано перевірити на чернетці, а чи не можна спростити відповідь?

Наведемо вираз чисельника до спільного знаменника і позбавимося триповерховості дробу:

Мінус додаткових спрощень полягає в тому, що є ризик припуститися помилки вже не при знаходженні похідної, а при банальних шкільних перетвореннях. З іншого боку, викладачі нерідко бракують завдання та просять «довести до пуття» похідну.

Простіший приклад для самостійного вирішення:

Приклад 7

Знайти похідну функції

Продовжуємо освоювати прийоми знаходження похідної, і зараз ми розглянемо типовий випадок, коли для диференціювання запропоновано «страшний» логарифм